
www.manaraa.com

www.manaraa.com

DUDLEY KNOX ..JBRARY

NAVAL POSTGRADUATE SCHC,

MONTEREY, CALIFORNIA 9394<>500ki

www.manaraa.com

www.manaraa.com

www.manaraa.com

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
MULTILEVEL SECURE FRONT END

FOR DATA COMMUNICATIONS

by

Philip J. Corbett
March 19 8 6

Thesis Advisor: Uno R. Kodres

ADproved for public release; distribution is unlimited

T226203

www.manaraa.com

www.manaraa.com

CURITY CLASSIFICATION QP THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

SECURITY CLASSIFICATION AUTHORITY

h. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

PERFORMING ORGANIZATION REPORT NUM8ER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

i. NAME OF PERFORMING ORGANIZATION

aval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

Code 62

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School
:. ADDRESS (Gfy, State, and ZIP Code)

(onterey, California 93943-5000

7b ADDRESS [City, State, and ZIP Code)

Monterey, California 93943-5000

1. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ADDRESS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

I TITLE (Include Security Clarification)

1ULTI LEVEL SECURE FRONT END FOR DATA COMMUNICATIONS

l PERSONAL AUTHOR(S)
^orbett, Philip, J

3a TYPE OF REPORT
faster' s Thes is

13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month, Day)
19 8 6 March

15 PAGE COUNT
113

5 SUPPLEMENTARY NOTATION

COSATI CODES

GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if neceuary and identify by block number)

Multilevel Security, Information Security,
Trusted Computer System, Communication Security,
Gemini Computers

9 ABSTRACT {Continue on reverse if necessary and identify by block number)

This thesis demonstrates the feasibility of using a multilevel secure
computer system to augment traditional security measures used to safeguard
sensitive information in an office to office communication environment. A
multilevel secure communication interface can be used for high speed
transmission of a wide variety of computerized information, from text files,
to large volumes of bulk data including computer program listings. Such a

system significantly reduces the delays associated with traditional
transmission techniques such as couriers, and registered mail. The ability
to encrypt all external communications provides additional security. By
automating message processing functions, providing secure storage devices,
and restricting access to sensitive information, the multilevel secure
communication interface can greatly improve overall system security.

>S"rJi3UTiON/AVAILABILlTY OF ABSTRACT

E3 jNClASSIFIED/UNLIMITED SAME AS RPT D DTlC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
2a NAME OF RESPONSIBLE INDIVIDUAL

Uno R. Kodres
22b TELEPHONE (Include Area Code)

408- 64 6-2197
22c OFFICE SYMBOL
Code 52Kr

ID FORM 1473, 84 mar 83 APR edition may be used until exhausted

All other editions are obsolete

1

SECURITY CLASSIFICATION OF THIS PAGE

www.manaraa.com

Approved for public release; distribution is unlimited.

Multilevel Secure Front End
for Data Communications

by

Philip J. Corbett
Lieutenant, United States Mav

B. S. , U. S. Naval Academy, 197

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 1984

www.manaraa.com

ABSTRACT

This . thesis demonstrates the feasibility of using a

multilevel secure computer system to augment traditional

security measures used to safeguard sensitive information in

an office to office communication environment. A multilevel

secure communication interface can be used for high speed

transmission of a wide variety of computerized information,

from text files, to large volumes of bulk data including

computer program listings. Such a system significantly

reduces the delays associated with traditional transmission

techniques such as couriers, and registered mail. The

ability to encrypt all external communications provides

additional security. By automating message processing func-

tions, providing secure storage devices, and restricting

access to sensitive information, the multilevel secure

communication interface can greatly improve overall system

security.

www.manaraa.com

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in the research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logic errors, they cannot be considered vali-

dated. Any application of these programs without additional

verification is at the risk of the user.

Some terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

occurance of a trademark, all trademarks appearing in this

thesis will be listed below, following the firm holding the

trademark:

1. Gemini Computers Inc. , Monterey, California

Gemini Trusted Multiple Microcomputer Base

GEMSOS

2. Digital Research, Pacific Grove, California

Pascal MT+

CP/M-86

3. INTEL Corporation, Santa Clara, California

INTEL

Multibus

APX-286

www.manaraa.com

Dl

NAVAL .- ;

"W^V.^omuSU

TABLE OF CONTENTS

I. INTRODUCTION 8

A. PROBLEM STATEMENT 8

B. PROPOSED SOLUTION 10

C. THESIS FORMAT 11

II.- BACKGROUND 13

A. MULTILEVEL SECURE COMPUTING SYSTEMS 13

1. Trusted Computer System Requirements ... 13

2. Secure Communication Methods 15

3. Network Security Threats 17

4. Data Encryption 20

5. Summary 27

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE . . 28

1. Description of Gemini System
Components 28

2. Gemini Resource Management Overview ... 30

3. Gemini Secure Operating System(GEMSOS)
Architecture 31

4. Summary 34

III. SYSTEM DESIGN 37

A. DESIGN ISSUES 37

1. Objectives 37

2. Design Constraints 39

3. Summary of Design Decisions 40

B. SYSTEM IMPLEMENTATION 43

1. Hardware Components 43

2. Application Program Format 46

C. SYSTEM SOFTWARE DESIGN 47

1. Application Segment Development 47

2. Process Synchronization 51

www.manaraa.com

D. DESIGN SUMMARY ... 52

IV. DISCUSSION OF RESULTS 53

A. SYSTEM OPERATION 53

B. SYSTEM TESTING 54

1. General Comments 54

2. System Security Testing 56

3. Encryption Testing .58

V. CONCLUSIONS 61

APPENDIX A: TERMINAL UTILITY PROGRAM LISTING 63

APPENDIX B: SYSTEM MANAGER PROGRAM LISTING . . 79

LIST OF REFERENCES 110

INITIAL DISTRIBUTION LIST 112

www.manaraa.com

LIST OF FIGURES

1.

1

Sample Project Office Organization 9

2. 1 Simplified System Design 18

2.2 ECB mode of DES encryption 22

2. 3 CBC mode of DES encryption 23

2. 4 CFB mode of DES encryption 24

2.

5

ISO Interconnection Reference Model 26

2.

6

Compromise and Integrity Properties 33

2.7 Single and Multilevel Device Properties .35
3. 1 Final System Design 41

3.

2

Process Block Diagram With Covert Channel 42

3.

3

Process Diagram Eliminating Covert Channels 44

3.

4

Final Hardware Diagram 45

3". 5 DCE to DTE Convertor 46

3.

6

Terminal Utility Flow Diagram 49

3.

7

System Manager Flow Diagram 51

www.manaraa.com

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis investigates the use of a multilevel secure

computer system as a secure front end for data communica-

tions in a small scale network environment. The specific

application of the proposed system would be to protect

incoming and outgoing messages from unauthorized access, as

well as to ensure secure internal routing of classified

information.

An example of the type of environment in which the

system would be utilized is shown in Figure 1. 1 . This

structure is similar to that found in many project offices

within the Department of Defense. Communications within a

project cover a wide range of classifications, and include

both military and civilian installations. Recent highly

publicized security violations have underlined the need to

make sure that communications channels both internal and

external are properly protected. Currently, this protection

is provided by a variety of physical and electronic means.

Among these techniques are:

1) hardware encryption devices

2) secure teletype

3) secure radio communications

4) couriers

5) message scramblers

6) secure modems

Each method has specific strengths and weaknesses that

can be exploited by a potential adversary. By far the most

difficult problems with existing methods are to control

access to the physical devices, and monitor internal distri-

bution of received information. Access control is the

responsibility of the security manager, however even in a

8

www.manaraa.com

Project
Manager

,i

1 1

\

" "

development
/test sites

supporting
contractors

construction
sites

fleet
assets

Figure 1. 1 Sample Project Office Organization.

small project the problem can become unmanageable. This is

especially true due to the recent proliferation of computer-

ized processing systems throughout the Department of Defense

(DOD) and commercial industry.

This research was performed in conjunction with the

Naval Postgraduate School's AEGIS Modeling Group. This

group is sponsored by the AEGIS Combat System Project Office

to conduct research in the area of combat system develop-

ment. The AEGIS project is made up of many field activities

which include both military and civilian personnel. All

activities receive, transmit, and are required to store

classified information. Included in this information are

messages, official correspondence, and computer programs

related to AEGIS Combat System development. These documents

are currently processed by the traditional methods discussed

www.manaraa.com

previously. The process is slow, and often reduces the

amount of time an activity has to respond to an urgent

problem. In addition to the external delays, once a docu-

ment is received, it must go through internal security

processing before it is delivered to the ultimate

destination.

B. PROPOSED SOLUTION

This thesis proposes inserting a multilevel secure

computer system as the trusted project communications inter-

face and traffic manager. The trusted computer system

[Ref . 1] would receive all incoming traffic, determine its

classification, and notify the destination that it has an

incoming message. If the destination did not have suffi-

cient clearance to display the message, it would not be

delivered. When transmitting data, the system would ensure

that the transmission device is of the appropriate classifi-

cation, and that the data is properly encrypted. By auto-

mating message handling and record keeping functions

associated with the transmission of classified data, the

transmission delay can be significantly reduced. The use of

a trusted computer system in this capacity would also allow

greater flexibility in establishing security policies. Each

classification level can be further broken into several

smaller groups in which access is based on a user's 'need to

know' information of a particular type. This technique

would enhance overall security by further restricting access

within each security level.

The Department of Defense is currently evaluating

several systems for approval to operate in this capacity.

The Gemini Trusted Multiple Computer Base is the trusted

computer system used in this research. A model for a secure

communication system was developed which allows single level

remote terminal users located at different sites, to commu-

nicate through a multilevel communication process created by

10

www.manaraa.com

the Gemini system. The Gemini trusted computer system is

still undergoing development which imposed some restrictions

on the scope of the communications system which was devel-

oped. These restrictions did not however, prevent demon-

strating the feasibility of using a trusted computer system

in this application environment.

Although primary concern is in protecting classified

data, interception of large quantities of unclassified (for

official use only) data can also be damaging. Documents

which are by themselves unclassified, can be analyzed along

with other intercepted information to produce a classified

result. For this reason, all external communications

throughout the model secure communication system are

encrypted.

C. THESIS FORMAT

This thesis is composed of five chapters which are

designed to provide the reader background information

concerning multilevel security concepts, and then discuss

the design of a model for the type of secure communication

system discussed above.

Chapter I provides introductory information concerning

the problem addressed in this research as well as the

proposed solution.

Chapter II contains a discussion of multilevel security

concepts. It explains the various types of security, and

discusses the current Department of Defense (DOD) require-

ments for each type. General security methods are presented

as well as methods used to attack secure systems. Data

encryption methods are discussed, and a strategy for

providing maximum data protection using the Gemini system'

s

data encryption device is developed. The remainder of the

chapter is devoted to explain Gemini system architecture,

and discuss how it creates a multilevel secure environment.

11

www.manaraa.com

Chapter III discusses actual Gemini system operation.

The design of a model secure communication system is

presented with a discussion of system constraints imposed by

hardware and software limitations.

Chapter IV discusses system implementation and testing.

Test results are used to demonstrate the system's ability to

act as a secure front end for data communications between

remote data terminals.

Chapter V brings together system test results to make a

series of observations concerning the feasibility of

utilizing a trusted computer system, such as the Gemini, as

a multilevel secure front end for data communications.

12

www.manaraa.com

II. BACKGROUND

A. MULTILEVEL SECURE COMPUTING SYSTEMS

1. Trusted Computer System Requirements

There are many documents which attempt to lay down

requirements for trusted computer systems. They have been

generated at all levels of the government, and in some cases

are in conflict with each other. In 1983 an attempt was

made within the Department of Defense (DOD) to bring

together these documents as well as other information

concerning trusted computer systems. The goal was to come

up with a single source document which would define guide-

lines which could be used to develop and test new systems.

The document which resulted from this research is entitled

the "DOD Trusted Computer System Evaluation Criteria, " more

commonly referred to as the 'Orange Book 1

[Ref . 1] .

Published in 1983, it contains definitions and information

essential to understanding trusted computer systems. The

Orange Book goes into extensive detail concerning the imple-

mentation of automated data processing (ADP) security

systems. This thesis will primarily be concerned with the

major issues involved in using a trusted computer system,

and will not deal with actual implementation details. As

described in [Ref. 1] there are two types of security policy

to be considered. The first is mandatory security which is

defined as:

"Security policies defined for systems that are used

to process classified or other specifically categorized

sensitive information must include provisions for the

enforcement of mandatory access control rules. That is,

they must include a set of rules for controlling access

based directly on a comparison of the individual's clearance

or authorization for the information and the classification

13

www.manaraa.com

or sensitivity designation of the information being sought,

and indirectly on considerations of physical and other envi-

ronmental factors of control. The mandatory access control

rules must accurately reflect the laws, regulations, and

general policies from which they are derived. " [Ref . 1: p.

72]

As the name implies, mandatory security policy is a

a strict limitation of access based on access level which is

determined by the user's security clearance. This policy

can not be changed and represents the foundation for the

second type of security policy. Discretionary security

policy is a subset of mandatory security policy which repre-

sents a further restriction of access to information based

on a user's 'need-to-know' the information. The control

objective for discretionary security is:

"Security policies that are defined for systems that

are used to process classified or other sensitive informa-

tion must include provisions for the enforcement of discre-

tionary access control rules. That is, they must include a

consistent set of rules for controlling and limiting access

based on identified individuals who have been determined to

have a need-to-know for the information." [Ref. 1: p. 73]

This type of security is a definite asset in a

research and development environment. In particular, when

developing combat system software, a project manager may

have teams developing several modules simultaneously on the

same system. Although the modules may be of the same clas-

sification level, the manager may want to limit each team's

access to the module on which they are working. This would

be accomplished by establishing a discretionary security

policy.

Traditional attacks on security systems have

involved compromise of keywords which would allow

unauthorized access to a system. This threat can largely be

14

www.manaraa.com

eliminated by physical means: changing keywords, multilevel

identification, and restricting access to the system. A

more subtle attack, and potentially more dangerous threat is

the establishment of a covert channel in the system. A

covert channel is defined as "any communications channel

that can be exploited by a process to transfer information

in a manner that violates the system security policy.

"

[Ref . 1: p. 79] In a multilevel computer system the presence

of a covert channel can be exploited to gain unauthorized

access to information without alerting security mechanisms.

Covert channels will be discussed further in Chapter III as

a design consideration for the multilevel secure communica-

tions system.

One of the most difficult tasks in developing

trusted computer systems is determining test criteria to

evaluate their performance. As the security level is

increased, the test criteria become more stringent and

detailed. When operating in a network environment, the

problem is made even more difficult by requiring communica-

tions security between the trusted computer systems as well.

This thesis is primarily concerned with this portion of the

security problem. The Department of Defense is in the

process of preparing a document which will detail evaluation

criteria for trusted computer networks [Ref. 2].

2. Secure Communication Methods

As described by Voydock and Kent in [Ref. 3], there

are two basic types of communications security. These are

link-oriented and end to end security measures. Selection

of a type of security measure for a particular application

is dependent on the complexity of the network, as well as

the vulnerability of the system to attack.

Link oriented measures treat each link in the commu-

nications chain from source to destination as a separate

security problem. Each node is responsible for encrypting

15

www.manaraa.com

information passing through it, and for transmitting the

information on the appropriate link. Encrypting with a

different key at each node provides added security in that,

compromise of one link does not necessarily mean that other

links will also be compromised. This type of system does

have several serious drawbacks [Ref . 4: p. 144]. First, in

order to encrypt using a different keyword at each node

means maintaining a large keylist. Changing keywords can be

very costly. Second, since each link is encrypted indepen-

dently there must be physical security at each node.

Finally, in addition to physical security at the nodes,

hardware and software components must be certified to

process the security level of information passing through

the node.

The second type of security measure is end to end

protection. End to end security treats the network as a

secure medium in which protocol data units (PDUs) are trans-

ported [Ref. 4: p. 145]. Since each link is not encrypted

independently, interception of the message stream at an

intermediate node will not necessarily compromise the infor-

mation. In addition to being a great deal less expensive to

implement, end to end encryption has several other advan-

tages [Ref. 4: p. 145] . Because there is no additional

encryption at intermediate nodes there is no need for phys-

ical security at the nodes. Users or host computer systems

can independently decide whether or not to use the security

measures, further reducing the cost. Finally, end to end

encryption can be used in both packet switched and packet

broadcast network environments, whereas link oriented

security measures are more difficult to adapt in a packet

broadcast system [Ref. 5: p. 213].

Figure 2.1 is a simplified diagram of the type of

communications system this thesis is proposing. The system

is relatively small scale with a limited number of users.

16

www.manaraa.com

The communication network consists of modem-like telecommu-

nications. Link oriented security measures are much too

complex for this type of application. They would also

provide no significant advantage over end to end measures.

End to end security measures were chosen for this design to

ease implementation and trouble- shooting. In this applica-

tion the host computers are assumed to be trusted computer

systems. The host is being used in a secure front end

configuration therefore the end to end security measures

will only be used to connect the hosts. This simplifies the

problem by limiting the number of hardware and software

interfaces involved in the end to end encryption path.

3. Network Security Threats

Before developing a trusted computer network, it is

necessary to understand how an intruder could try to exploit

system weaknesses. Voydock and Kent [Ref . 4] divide the

methods of attack into three categories. These categories

are:

1) unauthorized release of information

2) unauthorized modification of information

3) unauthorized denial of use of resources

The first type of attack is passive while the second

and third require active involvement by a potential

intruder. In passive attacks an intruder places himself in

a communication path and monitors traffic flowing over the

links. Even with the information encrypted the intruder can

still gain knowledge about the types of information being

transmitted, and the destinations to which it is sent. By

examining the message length and transmission frequency the

intruder gains additional information. One form of this

attack uses a 'Trojan horse' program to establish a covert

channel and alter message characteristics which would

passively divert copies of information to the intruder

[Ref. 6].

17

www.manaraa.com

site A

encrypted
data

site B

host
trusted
computer
system

A

host
trusted
computer
system

B

t

ii

1

multiple
user

terminals

multiple
user

terminals

Figure 2. 1 Simplified System Design.

Active attacks involve more risk to the intruder,

however, they can yield much more damaging results. These

attacks are normally directed at the protocol data units

(PDUs). Once access is gained to the PDU chain the stream

is modified in a manner dependent on the objective of the

intruder. The category of active attacks can further be

subdivided into three basic techniques [Ref . 7]:

1) message stream modification

2) denial of message service

3) spurious association initiation

18

www.manaraa.com

Message stream modification attacks seek to alter

the authenticity, integrity, and/or ordering of the PDUs

[Ref . 4: p. 142] . In attacking authenticity the source or

destination of a PDU is altered causing information to be

misdirected. This is similar to the passive attack. The

intent is to disrupt communication more than to passively

obtain information. Attacks on message integrity involve

the data portion of the PDU. Modifying or deleting informa-

tion can cause transmitted data to be misrepresented.

Finally, changing the order of the PDUs can make the message

unintelligible to the user trying to receive it.

The second type of active attack, denial of message

service, can take two forms. The first type is complete

denial in which a communications channel is blocked allowing

no PDUs to pass. In the second form all PDUs are delayed

making it impossible to decode the incoming message. These

attacks are difficult to detect, particularly if they are

put into effect between messages so that the user has no

indication that communications have been interrupted.

Spurious association initiation, the third type of

attack, is a form of jamming. In this attack a previous

recording of communications between two authorized users is

played back to confuse the receiver into thinking it is

receiving legitimate PDUs.

After examining the methods of attacking secure

networks, a plan to counter these threats needs to be devel-

oped. Voydock and Kent [Ref. 3] point out that there are

limitations on the ability to detect and prevent these types

of attacks. They say that "Although message stream modifi-

cation, denial of service, and spurious association initia-

tion attacks can not be prevented, they can be reliably

detected. Conversely, release of message contents and

traffic analysis attacks usually can not be detected but

they can be effectively prevented. " Given these

19

www.manaraa.com

limitations, they present five goals for providing communi-

cations security: [Ref . 4: p. 143]

1) prevention of release of message contents

2) prevention of traffic analysis

3) detection of message stream modification

4) detection of denial of message service

5) detection of spurious association initiation

Referring to Figure 2. 1 it can be seen that in the

system proposed by this thesis, there are two general areas

in which an attack could occur. The first is within the

host computer system. In this application the host is the

Gemini Trusted Multiple Microcomputer Base. The second

possible area is the communications network itself.

Communications on these links need to be encrypted in a

manner that will provide the maximum possible protection for

the encryption method chosen. The remainder of this chapter

will discuss how data encryption, and Gemini system features

can be used to achieve the desired security goals.

4. Data Encryption

Data encryption is- fundamental to a secure communi-

cations network. The methods available vary widely as do

the security levels for which they are approved. Approval

is based on the computational power, and the amount of time

required to break the code. A cipher that cannot be proven

to resist all attacks is considered 'computationally secure'

if the computational cost involved in breaking it exceeds

the value of the information gained [Ref. 8] . Recent tech-

nological advances have produced computer chips which reli-

ably encrypt data with a high degree of security. The

relatively low cost and high speed of these devices make

them excellent choices for secure network applications. The

major problem to date has been getting them approved for

transport of DOD classified data. Two major encryption

methods are the Data Encryption Standard (DES) [Ref. 9], and

20

www.manaraa.com

the Public Key systems [Ref . 8]. The Gemini system used in

this research utilizes DES as it's encryption method, and

therefore it will be the only method discussed.

The Data Encryption Standard (DES) is the National

Bureau of Standards (NBS) cryptographic protection standard

[Ref. 10]. It is widely used for the protection of commer-

cial data. It has come under attack from several sources

[Ref. 10: p. 171]. Because of these alleged weaknesses DES

is not currently authorized for transmission of DOD classi-

fied data. Despite its problems DES remains a highly secure

and reliable method of encryption for official documentation

which would otherwise be transmitted in unencrypted form.

As discussed in Chapter I, interception of large volumes of

unclassified data can often lead to unintended compromise of

classified information. The remainder of this section will

discuss characteristics of DES encryption and techniques

which can be used to maximize the protection of transmitted

data.

There are four modes that the DES can operate in.

They are: the Electronic Code Book (ECB) mode, the Cipher

Block Chaining (CBC) mode, the Cipher Feedback (CFB) mode,

and the Output Feedback (OFB) mode [Ref. 11].

a. Electronic Code Book (ECB) Mode

Figure 2.2 shows how a DES device operates in

this mode. ECB is the simplest of the DES modes however, it

is also the most vulnerable to attack. This is because

identical blocks of cleartext code will always produce iden-

tical ciphertexts until the encryption key is changed. This

method is not recommended for transmitting messages which

contain repetition of data forms such as English text

messages [Ref. 10: p. 178] . Since identical blocks yield

identical ciphertexts, by observing over a period of time an

intruder would eventually be able to determine the cleartext

message.

21

www.manaraa.com

CLEARTEXT

Key- DES
(Encipher)

M lll ll

Transmitter

64 Bit Block*

64 B.l Blocks

Receiver

Figure 2. 2 ECB mode of DES encryption.

b. Cipher Block Chaining (CBC) Mode

Figure 2. 3 shows how the CBC mode operates. C3C

is a block encryption method which overcomes the pattern

recognition problems of ECB mode by using the ciphertext of

each preceding block as an input to encrypt the next block.

The process is started by applying an initialization vector

to the first block of data to be encrypted. Incomplete

blocks are padded as additional protection against pattern

recognition attacks.

c. Cipher Feedback(CFB) Mode

Figure 2. 4 shows the CFB mode of operation. CFB

mode is a stream encryption technique in which a key stream

is generated, then combined with plain text to produce a

ciphertext. The ciphertext is then fed back as an input to

the key stream generation process. Stream ciphers are in

general slower than block ciphers [Ref . 4: p. 151], and are

not used when large throughputs are required.

22

www.manaraa.com

1 rinwmrter

ClEARTEXT

Block 2 Block 3

Key DCS
(Encipher)

CIPHERTEXT

4
Key DES

(Encipher

!

Key DES
(Decipher!

H
Key DES

(Det'Oher I

»

i

Block 1

1
Block 2

Recei»*r

Key — DES
(D«;ipf>e')

»

i

t

t

Biock 3

J

Figure 2.3 CBC mode of DES encryption.

d. Output Feedback (OFB) Mode

The OFB mode is also a stream encryption method.

In this method the key stream is completely independent of

the plaintext and ciphertext streams. This eliminates the

problem of error propagation and would seem to be a definite

advantage. However, some degree of error propagation is

23

www.manaraa.com

Trsntminar

r1

Synchronised 64 bit

ihitt rvgittvr inputt

(iniitii **\u4 r

Key

1

OES
1 Encipher)

! 1 1

-e-
Discard

ClEARTEXT

trom IV)

CIPMERTEXT

Figure 2. 4 CFB mode of DES encryption.

required to detect message modification atracks [Ref . 4:

p. 149] . As a result, OFB mode is not normally used in

secure network environments. This mode is not implemented

on the Gemini system's hardware encryption device because it

is not self synchronizing.

The communication system being developed in this

thesis can best be implemented using the CBC mode of DES

encryption. As discussed in Chapter I the system must be

capable of quickly handling large volumes of data (large

throughput), as well as official correspondance. Specific

steps can be taken to strengthen the CBC mode against the

types of attack presented earlier in this chapter.

The first method of attack was to force unau-

thorized release of message contents. There are several

ways to prevent release of message contents using CBC mode

encryption. Control of encryption keys and their use are

24

www.manaraa.com

very important in preventing attacks of this type. One

technique is to encrypt the PDU contents using one key, and

encrypt the network protocol address information using

another [Ref . 4: p. 153] . This provides a sort of 'two man

control' over the transmitted message. To prevent pattern

recognition attacks, the operator must ensure that each

message starts with a unique prefix. Since each ciphertext

depends on the encryption of the previous block, this will

ensure that each message produces a unique ciphertext. This

can be accomplished by employing a communication protocol

which generates a unique message identifier, or by changing

the CBC initialization vector for each message and transmit-

ting it with the message.

The second method of attack is through traffic

analysis. End to end security measures are more susceptible

to traffic analysis attack than link oriented measures

[Ref. 4: p. 157]. As discussed earlier in this chapter,

link oriented security measures were not feasible for this

application. As a result, the task will be to minimize the

susceptibility of the end to end system to this type of

attack. Figure 2. 5 shows the ISO reference model of open

system interconnection. Voydock and Kent [Ref. 3] show that

encryption below the transport layer does not provide

significant additional cryptographic protection. Encryption

at this level also provides the maximum reasonable degree of

protection against traffic analysis attacks. By encrypting

the source and destination information the intruder is

limited in his analysis to the host computer level. Even

then, the attacker can only examine the quantity, frequency,

and lengths between the hosts while protecting the identity

of the source and destination of the information.

Countermeasures used to detect message stream

modification attacks are related to the communication

protocol employed by the system. A wide variety of

25

www.manaraa.com

7

6

5

4

3

2

1

layer

application

presentation

session

transport

network

data link

physical

Figure 2. 5 ISO Interconnection Reference Model.

protocols are currently in use throughout DOD and commercial

industry. Because any secure communications network will

most likely adapt an existing protocol, no optimal protocol

will be proposed. The system will make use of existing

Gemini system features to ensure message authenticity and

integrity. If a communications protocol was found to have

insufficient protection against message stream modification

attack, it could be then be strengthened by adding

26

www.manaraa.com

additional transmission verification features to the

transport layer.

Detection of denial of message service attacks

involves verifying that the communications channel between

the two hosts is open. This is best accomplished in an

encryption environment by exchanging request-response PDUs

[Ref . 4: p. 165] at random intervals. Failure to respond to

this PDU indicates that a denial of service attack may be in

progress. This technique obviously slows down the system.

By selecting an appropriate frequency for the checks based

on the types of messages being exchanged, the effects of

this slow down can be minimized.

Spurious association initiation attacks can be

detected using the same method used to counter denial of

message service attacks. By sending the request-response

PDUs at random intervals, . 'play-back' attacks can be reli-

ably detected. Another method, using periodic intervals,

would be to send a time verification in the request-response

PDU.

5. Summary

The secure communications network proposed in this

thesis has two major areas of vulnerability: the host

computer system (Gemini system), and the communications

network. End to end security measures were chosen between

host computer systems because of the relatively small size

of the network, and for ease of implementation. DES encryp-

tion was selected for network encryption because it is

widely used, and is readily available as the Gemini system's

data encryption device. Although this method is not author-

ized for transmission of classified data it could be

combined with another approved encryption method to trans-

port classified information. This technique is called

layered encryption [Ref. 12], and will be further discussed

in Chapter III. The CBC mode of DES encryption was selected

27

www.manaraa.com

to best meet the needs of this application. The communica-

tions network can further be strengthened against attack by

taking the following steps:

1) Change encryption keys as often as is feasible taking
into account the expense involved, and the threat
environment in which the system operates.

2) Encrypt data PDUs and address information with sepa-
rate keys if possible.

3) Ensure each message starts with a unique message iden-
tifier to hamper pattern recognition attacks.

4) Encrypt data in the transport layer to provide maximum
cryptologic protection.

5) Use request- response PDUs, exchanged at random inter-
vals to verify that communications channels are open.

These features have been incorporated in system

design to the maximum degree possible. The next section

will discuss the Gemini Trusted Multiple Microcomputer

System, and how it provides security at the host computer

level.

B. GEMINI TRUSTED MULTIPLE MICROCOMPUTER BASE

1. Description of Gemini System Components

The Gemini Trusted Multiple Microcomputer Base is

one of many systems currently being evaluated by the

Department of Defense Computer Security Center for certifi-

cation to operate at the B3 [Ref . 1] level of classifica-

tion. Until recently lack of evaluation criteria, as well

as microprocessor technology made construction of such

systems impractical. The foundation on which all trusted

computer systems are developed is the security kernel.

While operation of the security kernel will be discussed in

general terms, details concerning kernel construction are

beyond the scope of this research. The Gemini system

employs the latest technology in both hardware and software

engineering. Some of it's major features are [Ref. 13]:

1) The capability to operate up to eight Intel APX-286
microcomputers in parallel. This provides tremendous
processing power, while communicating through shared
memory increases throughput.

28

www.manaraa.com

2) The Gemini system is extremely flexible with regard to
the types of peripheral devices which may be connected
to the Multibus. These include fixed hard disk,
removable disk. and high density floppy diskette
drives, as well as non-volatile memory devices. A
maximum of eight devices may be attached to each
RS-232 I/O interface board.

3) With its multiple microcomputers, the Gemini system
supports a variety of multiprocessing and multipro-
gramming applications. Processes can be pipelined to
a single processor, or distributed in parallel among
several processors.

4) Other features include a NBS DES chip encryption
device. real time clock, and non-volatile memory to
protect passwords and encryption keys.

The Naval Postgraduate School (NPS) version of the

Gemini system is a subset of the full delivery system. This

system has one APX-286 microcomputer, (2) 1.2 Mbyte floppy

disk drives, and one RS-232 interface board (max. 8 ports).

The NPS system does have other specific limitations which

will be discussed in Chapter III.

The Gemini, system also provides a self-hosting envi-

ronment for software development [Ref . 13: p. 4]. This

allows users to develop applications software. The original

intent of this thesis was to generate application software

using the Janus/Ada computer language. The Janus/Ada envi-

ronment was not available in time to support the research,

and as a result Pascal MT+ was used instead. Pascal MT+

programs must be modified to run with the Gemini Secure

Operating System (GEMSOS). Not all Pascal MT+ constructs

are supported in the GEMSOS environment. The majority of

modifications occur in the input/output area. Because

communications to and from devices require special formats,

a utility library is provided with the system containing

routines which put calling arguments in the proper format

for use in GEMSOS. These special features will be discussed

in more detail later in this chapter.

A major source of attraction for the Gemini system

is its tremendous potential for future growth. Its ability

to handle a variety of hardware configurations is especially

29

www.manaraa.com

valuable in DOD applications where a trusted computer system

may be required to communicate with systems using different

protocols and hardware interfaces. When utilized as

proposed by this thesis as a secure front-end for data

communications, the Gemini system could potentially communi-

cate simultaneously with a variety of secure communication

devices using different I/O ports.

2. Gemini Resource Management Overview

The Gemini Secure Operating System (GEMSOS) kernel

is logically divided into three management areas. These

are: segment management, process management, and device

management. Management functions are invoked by initiating

a GEMSOS service call [Ref . 13: p. 5]. The formats for

calling arguments are found in the GEMSOS interface

libraries provided with the Pascal MT+ compiler.

a. Segment Management

All data utilized in the GEMSOS environment is

contained in segments. The applications programmer is

mainly concerned with code segments, stack segments, and

data segments. Bootstrap and kernel segments normally do

not change when developing basic applications software on

the NPS system. There are eight segment management func-

tions. A discussion of how to initiate these service calls

is contained in [Ref. 14: pp. 13-78]. Segments can also be

managed in groups. Secondary storage devices are repre-

sented by volumes which can be identified as separate enti-

ties to a calling process. Volumes and individual segments

can be brought into the address space of the calling process

by using resource management service calls.

b. Process Management

The NPS Gemini system currently has only one

processor, however through process management functions it

is able to support a full range of multiprogramming and

multiprocessing applications. Each process is identified by

30

www.manaraa.com

code, stack, and data segments which uniquely identify the

process. Once created the process can be synchronized to

run simultaneously with other processes using one of two

methods. Eventcounts and sequencers were selected over

other possible techniques because they are particularly well

adapted to operation in a secure environment [Ref . 13: p.

6] . All segments created in an applications program are

assigned an eventcount and sequencer automatically. Process

management calls to these devices allow the programmer to

coordinate process functioning while maintaining access

security.

c. Device Management

The third management area is device management.

The Gemini approach to device management is to minimize the

size of the security kernel code by reassigning device

management functions to application level code whenever

possible [Ref. 13: p. 8]. This has two effects. Reducing

the size of the kernel makes verification easier, however it

also makes writing I/O applications software more difficult.

Traditional input and output files are replaced by segments

which can be read from or written into. Devices are

attached and detached to allow them to be used by more than

one calling process. Process synchronization primitives are

used to control access to the segments made available to an

attached device. The I/O device controller is treated as a

process, which is then synchronized with the available

segments eventcounts or sequencers to perform the required

device management functions. Additional information

concerning Gemini resource management functions is contained

in [Ref. 13: pp. 5-11]

.

3. Gemini Secure Operating System f GEMSOS) Architecture

The Gemini system uses four hierarchical rings to

implement its security structure. Ring provides the most

security, while ring 3 is least secure. It can support both

31

www.manaraa.com

discretionary and nondiscretionary policies. The nondiscre-

tionary or mandatory policy is controlled in ring 0. This

policy cannot be modified. Ring 1 is used to control the

discretionary or 'need to know' policy, supervise the use of

the data encryption device, and support any other security

functions not contained in the mandatory policy. Rings 2

and 3 are available to the programmer for use in developing

applications software.

The security mechanism which coordinates inter-ring

communications involves the control of access to subjects

and objects. A subject is a process which is allowed to

operate over a specific domain within the system. An object

is a specific piece of information which is assigned a

security label. All access between subjects and objects is

controlled by the GEMSOS security kernel located in ring 0.

Approval is based on a comparison of the security labels of

the two entities trying to gain access.

Security labels are used to identify the access

class of all subjects and objects. The access class is

further broken into a compromise (observe) level, and an

integrity (modify) level. Compromise and integrity protec-

tion are based on strict properties which must be observed

in order for access to be granted. Figure 2. 6 is taken from

[Ref . 13: pp. 16,17], and contains a simplified statement of

these properties. Domination as stated in these properties

means that the level of the access component is greater than

or equal to the entity it is trying to observe or modify.

Compromise protection property 1 is a traditional

security policy. It states that in order to observe infor-

mation, you must have a clearance equal to or greater than

the information you want to observe. The second property is

more subtle. This property prevents, for example, a secret

user from modifying a file which could then be observed by a

confidential user. This property is especially important in

32

www.manaraa.com

Compromise Properties:

1) If a subject has "observe" access to an object,
the compromise access component of the subject must
dominate the compromise access component of the
object.

2) If a subject has "modify" access to an object,
the compromise access component of the object must
dominate the compromise access component of the
subject.

Integrity Properties:

1) If a subject has "modify" access to an object
then the integrity access component of the subject
dominates the integrity access component of the
object.

2) If a subject has "observe" access to an object
then the integrity access component of the object
dominates the integrity access component of the
subject.

Figure 2. 6 Compromise and Integrity Properties.

prevention of 'Trojan horse' type attacks [Ref . 6]. The

integrity protection properties are similar to the compro-

mise properties except that they refer to the ability to

modify information. Property 1 states that in order to

modify a confidential document you must have at least a

confidential integrity level. The second integrity property

prevents, for example, secret users from observing (and

possibly being influenced by) information which could be

modified by someone with a lower integrity level.

33

www.manaraa.com

In addition to the access class integrity described

above, the Gemini system also employs ring integrity. Ring

integrity means that subjects at a certain level can only

access objects of the same, or a higher ring number. This

policy reinforces the hierarchical structure of the GEMSOS

rings.

These compromise and integrity properties are

further complicated by the fact that the Gemini system is a

multilevel system. This means that both users and resources

may have clearance to access a range of security levels.

Multilevel subjects are potentially very dangerous because

within their range of operation they are not subject to the

second compromise and integrity protection properties

[Ref . 13: p. 20]. It is up to the applications programmer

to ensure that he does not create subjects which will allow

violation of these properties. This is especially important

when interfacing with devices. Figure 2. 7 is taken from

[Ref. 13: pp. 21,22], and represents a summary of the

security properties of single and multilevel devices.

Device access levels refer to the physical security

of the environment in which the device is going to operate.

This is separate from the security level of the process

which is attempting to communicate using the device. For

example, a terminal located in an unsecure room with an

unclassified device access level, cannot receive information

from a secret process. The term single level device implies

that the maximum and minimum access classes for the device

are the same. In multilevel devices they are different, and

represent the range over which the device is allowed to

operate.

4. Summary

The Gemini Trusted Multiple Microcomputer Base is an

extremely capable computer system which combines

state of the art technology with a high degree of

34

www.manaraa.com

Single level devices-

1) To receive ("read") information:
process maximum compromise >= device minimum compromise
device maximum integrity >= process minimum integrity

2) To send ("write") information:
device maximum compromise >= process minimum compromise
process minimum integrity >= device minimum integrity

Multilevel devices-

1) To receive ("read") information:
process maximum compromise >= device maximum compromise
device minimum integrity >= process minimum integrity

2) To send ("write") information:
device minimum compromise >= process minimum compromise
process maximum integrity >= device maximum integrity

Figure 2. 7 Single and Multilevel Device Properties.

flexibility to be able to handle a variety of possible

applications. Its multiple processor and multiprogramming

configurations are valuable assets when functioning as a

secure front-end for data communications as proposed by this

thesis. By being able to simultaneously handle devices with

different protocol requirements and security levels, the

Gemini system operating in this mode could potentially elim-

inate the need for separate stations for each secure commu-

nication device.

Key to developing a trusted computer system applica-

tion is the ability to develop a sound, secure resource

35

www.manaraa.com

management strategy. This strategy must adhere to the

system's mandatory security policy, and avoid misapplication

of resource management functions which could make the system

vulnerable to a covert channel attack.

Chapter II introduced trusted computer system

concepts, and provided necessary background information

concerning the Gemini system. Chapter III will discuss

Gemini system operation, and the creation of an application

program which will allow the system to function as a multi-

level secure front-end for data communications.

36

www.manaraa.com

III. SYSTEM DESIGN

A. DESIGN ISSUES

1. Objectives

The primary objective of this design was to develop

a simple communications system which would demonstrate how

the Gemini Trusted Multiple Microcomputer Base could be

effectively utilized as a secure front end for data communi-

cations. There were three- major phases in developing the

system design:

1) Establish two way communications between users at
remote terminals using the Gemini system as an
external communications interface.

2) Use the Data ciphering Processor (DCP) [Ref . 14: p.
57] to provide end to end encryption of external
communications.

3) Demonstrate the use of Gemini security mechanisms to
prevent unauthorized access to classified information.

In order to create a realistic communications link

it was necessary to simulate having two separate trusted

computer systems communicating with each other. This was

accomplished by having the Gemini system communicate with

itself using separate I/O ports. By routing the incoming

and outgoing traffic from each port to separate processes,

the two computer environment was simulated. The system is

operated by a system security manager who is located at a

data terminal. The system security manager is responsible

for:

1) System start-up and initialization.

2) Assigning access levels for user terminals.

3) Control of communications at the external ports.

4) Insertion of cryptographic keywords.

5) Routing of incoming traffic to the appropriate
terminals.

Each user terminal is assumed to be located in an

area which provides appropriate physical security for the

37

www.manaraa.com

access level of the terminal. Each can enter messages to be

sent, transmit messages, and display incoming messages

provided the terminal at which they are located has the

proper access level.

To accomplish the second objective, the data

ciphering processor (DCP) was used as discussed in Chapter

II. The entire outgoing message, including address informa-

tion, is encrypted to provide maximum protection. This

technique is valid for this specific application because of

the small size of the network, and the limited quantity of

information being exchanged. It may not be appropriate in

larger scale applications involving larger networks such as

the Defense Data Network (DDN). Communications are assumed

to be established between the two sites using some form of

modem-like telecommunications device. In this design, the

RS-232 external communications ports were directly connected

by an interface cable. Since all incoming traffic must pass

through the trusted computer first, it is up to the Gemini

system to decipher the address information, determine the

access class, and route the message to the proper incoming

message buffer.

Additional security could be provided by encrypting

the data a second time prior to transmission using another

method. This technique is called layered encryption

[Ref . 12: p. 159]. The second method could be an authorized

DOD hardware encryption device, a secure teletype, a message

scrambler, or an interface to a secure network such as the

Defense Data Network (DDN). The Gemini system would format

outgoing messages, and route them to the proper device.

The final goal, to test security of information and

access, was demonstrated using a series of specific configu-

rations and data sets to exercise security mechanisms.

These tests are meant to demonstrate, rather than prove that

information security and integrity are preserved. They are

38

www.manaraa.com

in no way intended to be exhaustive, however will allow for

a series of observations to be made concerning overall

system security.

2. Design Constraints

The hardware and software limitations of the Naval

Postgraduate School (NPS) Gemini system limited the scope of

system design. The NPS system has eight ports available for

attachment of I/O devices. This would appear to allow for

at least four user terminals in addition to the two communi-

cations ports and system security manager terminal. This is

not the case due to a limitation on the number of process

local device slots(8) which identify the I/O devices. The

serial read and serial write devices must have separate

process local device numbers assigned. Therefore two

process local device numbers are required to attach a

terminal as a read/write device. This situation is further

complicated by the requirement that the read encryption,

write encryption, read decryption, and write decryption

devices must be attached separately also. Device management

was a major factor in determining ultimate system

configuration.

Software development constraints were generated by

the environment in which this type of system would be

utilized. An assumption was made that when acting as a

secure front end, the system would most likely be adapted to

an existing computerized processing system. There are a

wide variety of such systems currently in use both within

the Department of Defense (DOD) and commercial industry.

Each system has specific built in physical and software

security attributes. For this reason, no effort was made to

provide security between the trusted computer system and the

remote data terminals. These lines are assumed to be

secure, as are the locations in which the terminals are

utilized. In order to provide overall system security,

39

www.manaraa.com

these security measures would have to be verified prior to

installation of the trusted computer system at a particular

activity. Another assumption was that the system could

potentially communicate by a variety of means including;

secure teletype, secure landline, Autodin, or DDN. For this

reason, no specific communications protocol was adopted. A

source and destination header was placed at the start of

each message along with initialization information for the

data encryption device. This header could be further modi-

fied to allow the message to be transmitted over a partic-

ular communications network. The simplified source and

destination header will be sufficient for purposes of this

research.

3. Summary of Design Decisions

Figure 3. 1 shows a block diagram of the final system

design. Due to the process local device slot limitations

discussed in the preceding section, only two user terminals

were used. To provide additional flexibility, the access

class of each terminal can be set and changed by the system

security manager. All communications leaving the external

communications ports are encrypted using the Data Encryption

Standard (DES) operating in Cipher Block Chaining (CBC)

mode. Communications between the trusted computer system

and the remote data terminals are not encrypted, however are

assumed to travel in a physically secure environment.

System operation is controlled by the system security

manager. User terminals can send messages to and receive

messages from the trusted computer system, however they must

rely on the system security manager to actually transmit the

messages.

At first glance it appears to be a relatively simple

task to create a single process which would allow messages

to be exchanged between users. Figure 3. 2 shows an example

of how a process like this would operate, and why the design

40

www.manaraa.com

encrypted data

'!
i

1

excomm excomm
port port

A B

Gemini Trusted
Computer System

. ik—

i .

'

'

remote user
terminal

A

remote user
terminal

B

Figure 3. 1 Final System Design.

would not work. The problem is caused by the multilevel

nature of the communications process. In order to handle

messages with different access classes, it must be a multi-

level process. Attaching the single level terminals

directly to a multilevel process creates the potential for a

41

www.manaraa.com

covert channel [Ref . 1: p. 79] which could be exploited to

gain unauthorized access to classified information.

encrypted
communications

u

i I

.

excomm excomm
port port

A B

multilevel
communications

process

i

1
'

1

1

1

i

multileve
environme

si
snt

\ V

^- -v^— — — _ — -k
('^'^^jpotential^---'

covert
channel

1

!

n v f

remote user
terminal

A

remote user
terminal

B

i

Figure 3. 2 Process Block Diagram With Covert Channel.

42

www.manaraa.com

To eliminate this problem, it is necessary for the

system security manager to create a single level process for

each user terminal attached. Figure 3.3 eliminates the

covert channel problem by providing a single level process

buffer to protect information. Even if an attacker was to

cause information of a higher level to be misrouted by the

multilevel process, it would still be protected from compro-

mise by the single level process which interfaces directly

with the user terminal.

This design creates another problem. That is, the

need for synchronization among the processes. Interprocess

communications are synchronized by using eventcounts

[Ref . 15: p. 20] . Although the system simulates two sepa-

rate trusted computer systems, only one multilevel communi-

cations process was used to simplify the synchronization

problem. Since the communications processes would be iden-

tical this limitation did not adversely impact system

design.

B. SYSTEM IMPLEMENTATION

1. Hardware Components

As discussed in the preceding section, the number of

data terminals used in the system was limited by the number

of process local device slots available. Figure 3. 4 shows

the final system hardware design. Terminal is used by the

system security manager to initiate and coordinate communi-

cations via the external communications interface. Two

remote user terminals are also connected as read/write

devices. They represent the users at the two sites which

are exchanging information. The external communications

interface consists of a special cable which allows one of

the ports to function as a data communication equipment port

(DCE) while the other functions as a data terminal equipment

(DTE) port. All of the Gemini ports are initially config-

ured as DCE ports. In order to communicate computer to

43

www.manaraa.com

encrypted
communications

excomm
port

A

excomm
port

B

multilevel
communications

process

multilevel
environment

single level
term utility

process

single level
term utility

process

remote user
terminal

A

single level
environment

remote user
terminal

B

note: The single level terminal processes buffer
information traveling to and from user terminals
preventing the covert channel problem.

Figure 3. 3 Process Diagram Eliminating Covert Channels.

44

www.manaraa.com

computer required the use of a special DCE to DTE convertor

cable [Ref . 14: p. 51]. Figure 3.5 shows how the convertor

cable is constructed. Gemini ports 3 and 4 were not used in

this application.

Gemini
Trusted
Computer
System

PO

p3 pi

p4 p2

p5

p6

P7

data
terminal

DCL/DTE
convertor

data
terminal

i

1

i

j

data
terminal

:

'

printer

port

]

:

]

]

!

]

!

1

assignment

?0- system
01- extern;
02- extern;
03- not us(
d4- not use
d5- remote
d6- remote
a7- printe]

ts:

manager '

al commun.
al commun.
-d
id
terminal
terminal

:erminal
Lcation port
Lcation port .

user 1
user 2

1

2

Figure 3. 4 Final Hardware Diagram.

45

www.manaraa.com

DCE/DTE
converter

to
external
communication
port 1

to
external
communication
port 2

Figure 3.5 DCE to DTE Convertor.

2. Application Program Format

Preparing programs to run in the Gemini Secure

Operating System (GEMSOS) environment is significantly more

complicated than running the Pascal MT+ programs in a non-

secure environment. In order to be accepted by the system

they must first be put into a specific format which can be

recognized by the Gemini Secure Operating System (GEMSOS),

to gain access to the security kernel. There are several

software tools which can greatly speed up the process of

preparing a program to be run in the secure environment.

The fact that a program compiles successfully does not

necessarily mean that it will run in the GEMSOS environment.

Following Pascal MT+ compilation, the program is linked to

the appropriate modules using a file named, ' applica-

tion_name. KMD ' [Ref . 16]. This file contains a formatted

46

www.manaraa.com

list of the modules the application segment needs to be

linked with. The result of the linking process is a file

named 'application_name.CMD' which still has no security

classification assigned. To assign security classification,

and prepare the program to execute in the secure environ-

ment, a secure volume must be created by running the oper-

ating system generation (SYSGEN) program.

Executing the SYSGEN program includes the applica-

tion program into a segment structure which is then trans-

formed into a "bootable system segment structure on

formatted volumes." [Ref . 17: p. 1] Detailed procedures for

using the SYSGEN program are contained in [Ref. 17: pp.

8-18] . The key to proper use of the SYSGEN program is iden-

tifying the segment structure in which the application

segment is going to be placed. The segment structure

includes the boot-strap, kernel, application code, and data

segments. The easiest way to identify this segment struc-

ture is to include it in a submit file named ' applica-

tion_name. SSB. ' For basic application programs, the segment

structure does not change. Use of the submit (. SSB) file

eliminates the need to enter the segment structure interac-

tively each time the operating system generation program is

run. Use of the SYSGEN submit mode is further explained in

[Ref. 17: pp. 13-18].

C. SYSTEM SOFTWARE DESIGN

1. Application Segment Development

Application software for this system was developed

using modular programming construction techniques. This

allowed for independent testing of each module prior to its

inclusion in the main program. This technique was espe-

cially useful because trouble-shooting GEMSOS related Ring

service calls was particularly difficult. Figure 3. 3 shows

the three processes which were developed as application code

segments. They are:

1) multilevel system manager process

47

www.manaraa.com

2) terminal A single level terminal utility process

3) terminal B single level terminal utility process

Each process was developed as an independent appli-

cation code segment. The terminal utility segments are

almost identical, however must remain separate entities

because they represent different systems. In addition, they

are assigned different physical ports and can also be

assigned different access levels.

a. Terminal Utility Segments

As discussed earlier in this chapter the user

terminals can input, transmit, and display messages. Each

terminal is a single level device capable of sending and

receiving messages of the same level. Figure 3. 6 shows a

flow diagram for the terminal utility application segment.

The actual code for the Pascal MT+ program which implements

this flow diagram is contained in Appendix A. This program

is activated when the terminal process is created by the

system manager process.

All messages input and received at the terminal

are stored in a specially designated message buffer segment.

Access to this segment is shared by the user terminal and

the system manager process. Each terminal has its own

message buffer segment, and cannot access the other's

segment without going through the system manager process.

When the user has completed his message transactions, he

initiates a logoff procedure.

The logoff procedure deletes the terminal

process and returns the resources allocated to the process

to the system manager process which created it. These

include memory space, process local segment numbers, and any

attached devices.

b. System Manager Segment

The system manager segment controls system

configuration, data encryption, and communications through

48

www.manaraa.com

display
mode
entry
menu

display
error
msg

enter
mode

input display xmit

enter
message

to be xmit

display
incoming

msg

display
error

notify
sysmgr

msg ready

await
incoming

msg

logoff

delete
child

process

end

Figure 3. 6 Terminal Utility Flow Diagram.

49

www.manaraa.com

the external communications ports. Figure 3. 7 shows a flow

diagram of how this segment is constructed. A detailed

source listing of the Pascal MT+ code implementation is

contained in Appendix B.

Creation of a child process requires completion

of four record structures. Each record structure has

several entries. Each entry is completed in a specific

order which builds to the ' create_process' resource manage-

ment call. Detailed instructions for process creation and

record entry format are found in [Ref . 14: p. 28]. Segment

and process management are the most difficult concepts for

someone unfamiliar with secure computer systems to grasp.

The procedure developed in this segment could be used as a

model for process creation in other programs. The specific

entries may vary, however the physical structure of the

procedure is general enough to fit a variety of

applications.

The system security manager located at terminal

has direct control over system assets. To provide this

control, the system manager has the option of specifying

(within predefined limits) how the system will operate.

These parameters are entered when the system is initialized.

They are interactively entered into a system operator record

from which they can be drawn when required by other proce-

dures. Parameters which do not need to be directly

controlled by the system manager are fixed and cannot be

directly accessed.

c. Program Documentation

Each module in the application segments has a

header describing its purpose and general operation. Since

this is the first research effort using the Gemini system,

the intent was to provide clear programs which could be used

as a basis for future research. In some cases this meant

sacrificing efficiency in order to provide better clarity.

50

www.manaraa.com

start

input
system

parameters

notify
source

of error
msg

prepare
error

message
X

comm test
crypto test

create
terminal
process

await
srce ready

to xmit

xmit/recv
message

srce=dest
for next

transmission

£ notify dest
of incoming

msg

Figure 3. 7 System Manager Flow Diagram.

51

www.manaraa.com

2. Process Synchronization

Process synchronization was accomplished using the

eventcount of the message buffer segments of each terminal

process created by the multilevel system manager. By

advancing the proper stack eventcount the terminal process

alerts the system manager that it is ready to begin message

processing. The terminal advances the the outgoing message

buffer segment eventcount to notify the system manager

process when it desires to transmit a message or when it has

completed processing. When a terminal process indicates

that it desires to transmit a message, the system manager

transmits the message, and then unblocks the other terminal

process to display the incoming message by advancing its

incoming message buffer eventcount. This process can be

continued indefinitely. The actual implementation of this

sequencing is further explained in the applications code

segment listings contained in Appendices A. and B.

D. DESIGN SUMMARY

This chapter has discussed the system design process in

terms of its objectives and limitations. Hardware limita-

tions of the NPS Gemini system limited the scope of the

system design, but did not prevent achieving desired design

goals. The resulting hardware and software configuration

was implemented using modular construction techniques which

greatly reduced the number of software errors.

The resulting system utilizes the Gemini as a two-way

communications interface, and message processing facility.

All communications are protected to the maximum extent

possible using the Data Encryption Standard (DES) algorithm

in the cipher block chaining (CBC) mode. Terminal processes

are assigned single level access which eliminates the covert

channel problem and prevents the user from gaining unauthor-

ized access to classified information.

52

www.manaraa.com

IV. DISCUSSION OF RESULTS

A. SYSTEM OPERATION

The model communication system developed in this thesis

to demonstrate the feasibility of using a trusted computer

system as a secure front end for data communications met or

exceeded all design goals. Messages were passed between two

remote terminals in a manner that ensured security from

unauthorized access at both source and destination. Data

encryption was utilized to maximize the security of the

transmitted data. Finally, by varying the access class of

the terminal processes it was possible to demonstrate the

system's ability to detect and respond to security viola-

tions. Flexibility in determining system configuration

allows modification of system parameters to meet a variety

of test requirements.

System operation is initiated and controlled by the

system manager. The multilevel system manager process

creates the single level terminal processes at an access

level predetermined by the system manager. Once initialized

a remote terminal may only display and enter messages which

are of the access level at which the terminal process was

created. It is important to note that the user does not

assign the classification of the outgoing message. Message

classification is assigned by the system manager according

to the access level of the terminal sending the message.

This is done to prevent a user from downgrading a classified

message to send to an unclassified user at another terminal.

All security checks are therefore performed within the

system manager process. For test purposes, the terminal

access levels in this system are manually entered by the

system manager. If the project manager did not want to

leave this choice up to the system manager, the access level

53

www.manaraa.com

information could be hidden in a file that he does not have

access too. Once it is started, the system operates inde-

pendently. This eliminates the possibility of a corrupt

system manager from manually misrouting information stored

in the message buffers.

One potential problem was the possibility that an

unclassified user could enter classified information in an

unclassified message and transmit it to an accomplice who

had tapped into the external communications line. To help

prevent this, the outgoing message is encrypted using keys

which are inserted by the system manager. Possible compro-

mise of the key could further be prevented by having the key

entered by someone other than the system manager. The goal

of this process was to develop a system in which no one

person would be in possesion of enough information to

misroute, and potentially compromise classified information.

There are a wide variety of possible system configurations.

Selection of a particular configuration would have to be

based on a detailed study of the activity, and its associ-

ated security requirements.

B. SYSTEM TESTING

1. General Comments

The process of debugging and running applications

programs proved to be much more time consuming than had been

originally anticipated. Three factors contributed to this

problem. They were:

1) unfamiliarity with multilevel security concepts

2) difficulty in transforming Pascal MT+ programs to code
compatible with the trusted computer operating system

3) time delays required to prepare modified programs to
be tested in the secure environment.

As with any new area of study, multilevel security

has its own terms and concepts which must be thoroughly

understood prior to attempting to use the trusted computer

system. As discussed in Chapter II, the manner in which the

54

www.manaraa.com

Gemini system manages resources is very different from

traditional non-secure systems. The interaction of the

process, segment, and device management functions is key to

understanding overall system operation.

The second problem concerned identifying Pascal MT+

instructions which were not recognized by the trusted

computer operating system. A program which compiles without

error, may not necessarily run in the secure environment.

An example of this would be a program which contains the

Pascal command 'read' or 'write'. These are legitimate

commands which would compile without error. The problem

arises when the secure operating system encounters the

command. Trying to read or write to a file is not allowed

in the Gemini Secure Operating System (GEMSOS). The file in

this case would have to be redefined as a segment to which

the process has access. The data would then be passed to

and from the segment by using a pointer to the desired loca-

tion. The best way to overcome this problem is to start

with very simple programs which test specific functions and

gradually build to larger more capable programs.

The final difficulty had to do with the amount of

time that was required to take a program which had been

compiled and prepare it to be tested in the secure environ-

ment. As discussed in Chapter III, in order to prepare a

program to run in the secure environment, a secure volume

containing the program segment must be created by running

the operating system generation (SYSGEN) program. Once the

secure volume is created, the system is reinitialized using

the secure application program volume. When a problem is

encountered in the execution of the program, the system will

either execute an interrupt trap halt and indicate the

processor's register contents at the time of the interrupt,

or in some cases will halt completely. In either case, the

error must be corrected before the system will be able to

55

www.manaraa.com

progress any further in the program. Once the desired

correction has been made, the preparation process must be

repeated to test the modified program. For the programs

developed in this application, the preparation process took

from between four and seven minutes for each program. The

use of modular programming techniques is vital when program-

ming in this environment to minimize the time delays associ-

ated with program execution and testing.

As future versions of the Gemini system become

available, it is expected that the effects of these problems

will be significantly reduced. Expanded system libraries,

and an improved application development environment will

make the process of writing programs which can be run in the

GEMSOS environment simpler and less time consuming.

2. System Security Testing

The system security test phase was designed to

demonstrate particular security features of the model commu-

nications system. It was not intended to prove that the

security of the system that was developed could not be

violated. One of the major results noted was the fact that

no matter how secure a system is, it can still be violated

by generating application programs which misroute informa-

tion obtained through the security kernel. For example, if

a corrupt system manager is allowed to modify the encryption

key, he could potentially insert a key which had also been

passed to someone who is monitoring system external communi-

cations. This would allow him to decrypt the outgoing

message and compromise any information contained in it.

Another example would be if the user was allowed to specify

the classification of his outgoing message. This would

allow a corrupt user to improperly downgrade information and

send it to an unauthorized destination. Tight restrictions

imposed by the project manager are required to limit access

to the application code segment and prevent these types of

problems.

56

www.manaraa.com

The Gemini system used in this research does not

currently support the attachment of classified serial I/O

ports. This means that the system does not identify the

eight ports in terms of a specific access level. Future

versions will be able to identify each port with a specific

access class. This will prevent an unclassified user from

transmitting data through an unclassified port. User termi-

nals will also be attached at a predefined level to prevent

the system manager from creating a classified terminal

process at an unclassified port.

Security testing consisted of two major areas.

First, communications were established between users having

the same access level. Messages were passed between the two

terminals via the multilevel communication process.

Initially a multilevel (min-unclass, max-confidential

)

system manager was created to coordinate communications

between two unclassified users. As discussed above, the

Gemini system does not currently support secure serial I/O

which necessitated manually entering the access level of

each of the terminal processes. Once the secure serial I/O

capability is available, the system manager would not have

to specify the classification of data going to and from the

remote user terminals because it is already specified by the

system classification of the port to which the terminal is

attached. Following unclassified testing, confidential

messages were exchanged between the simulated confidential

user terminals.

The second task was to test the system's ability to

detect and respond to a security violation. To accomplish

this, the user terminals were assigned different access

levels. When messages were sent between the terminals, the

system recognized the security violation and issued the

appropriate error message back to the originator. In this

case the security check consisted of a comparison of the

57

www.manaraa.com

incoming message header, with the system manager defined

destination access level. The error message interrupts the

normal sequential passing of messages, to inform the origi-

nator that the destination of his message did not have the

proper access level to receive it.

Although only one communication process was used to

create both terminal processes, the terminals operate inde-

pendently to simulate being located at two different activi-

ties. They send and receive messages from different

physical ports, and communicate to each other using

different external communication ports. Inter-process

synchronization was accomplished by allowing only one

terminal to send a message at a time. Once a terminal's

message transmission was complete, control was passed to the

other terminal to allow it to display the incoming message,

and send its outgoing message. This technique was chosen to

facilitate testing, and is not the only method which could

have been used. Depending on the particular application, a

timed polling scheme with all terminals operating simultane-

ously may be appropriate.

3. Encryption Testing

All data passed between the external communications

ports was encrypted using the Data Encryption Standard (DES)

algorithm operating in the cipher block chaining (CBC) mode.

Data encryption was enhanced by using the techniques

discussed in Chapter II. The objective was to create a

unique ciphertext for each transmitted message, regardless

of whether the actual text of the message was the same.

This was accomplished by providing the data encryption

device with a unique initialization vector for each message.

This system uses the transmission time of the message as the

initialization vector. In an actual system, this would need

to be modified by a random offset to prevent someone moni-

toring the outgoing traffic from gaining access to the

58

www.manaraa.com

initialization vector. Another way to do this would be to

use a sequential message number which had been randomly

modified as the initialization vector. As long as the

initialization vector is unique, no two messages will have

the same ciphertext.

To test the data encryption device using the data

encryption techniques discussed above, a series of test

messages were generated. These messages were used to test

specific features of the data encryption process. The

system manager application program was modified to display

the ciphertext of each encrypted block. Identical messages

were transmitted to compare the resulting ciphertexts. As

expected, the resulting ciphertexts were not the same.

Error propagation was also tested by inserting errors in the

received ciphertext prior to decryption. The errors

appeared in the decrypted text however were confined to the

block of data in which the error was introduced.

Another area of concern was that encrypting the

outgoing message adversely effect system operation. As

discussed in Chapter II, there are two basic encryption

methods. They are the methods which utilize feedback to

provide added security such as the cipher block chaining

(CBC) method, and those which do not, such as the electronic

code book (ECB) method. In the Gemini system, use of a

feedback mode requires that the encryption and decryption

devices be reattached with the new feedback key for each

block of data processed. This slow-down could degrade

impact system performance where large messages are required

to be transmitted at high speeds. A decision would have to

be made whether to sacrifice some security by using the ECB

mode in order to gain speed. This potential problem is

largely overcome in the Gemini system by the speed of the

Intel APX-286 microprocessor. When test strings were used

to provide continuous output on the external communications

59

www.manaraa.com

ports, no noticeable slow-down was observed when using the
CBC (feedback) mode.

60

www.manaraa.com

V. CONCLUSIONS

In this thesis a model secure communications system was

developed to demonstrate the feasibility of using a multi-

level secure computer system as a secure front end for data

communications in an office to office communication environ-

ment. The Gemini Trusted Multiple Microcomputer Base used

in this research proved to be an extremely flexible system,

easily capable of providing a high speed data communication

interface. The following observations concern the use of a

multilevel secure computer system in this capacity:

1) The major advantages of a multilevel secure front end
are the reduction in the message transmission delay
due to internal and external processing requirements,
and the additional flexibility it provides in devel-
oping a discretionary security policy. Each security
classification can be broken into several 'need to
know' classes which further restrict access to infor-
mation, and provide additional security.

2) By developing secure application software which auto-
mates internal message routing, and security record
keeping requirements which are currently done manu-
ally, a significant reduction in the manhours required
to process and store sensitive information can be
realized.

3) A major problem in developing application software is
the difficulty encountered in generating programs to
run in the secure environment. There is currently no
way of taking existing software for a particular
system, and directly adapting it to run in a secure
environment.

4) Electronic transmission of sensitive information in an
encrypted format, reduces the delay associated with
traditional transmission techniques. Information
which can not be readily converted to a form which
could be transmitted electronically, would still be
transmitted via conventional routes.

5) Data encryption can be used to greatly increase the
protection of transmitted data, without adversely
effecting system performance. Although not currently
approved for transmission of Department of Defense
(DOD) classified data, the Data Encryption Standard
(DESJ algorithm when used in cipher block chaining
(CBC) mode as discussed in Chapter II provides the
maximum protection. By multiprocessing the DES
encryption process with a DOD approved method the
system can be used for transmission of classified
data.

6) By directly controlling the access of remote users to
external communication devices, the security manager

61

www.manaraa.com

can have positive control over all incoming and
outgoing messages. The security manager defines the
access level of each device, preventing unauthorized
transmission of classified data, and ensuring that
incoming traffic is routed in a secure manner.

7) The multilevel secure computer system can interface
directly with a wide variety of communication equip-
ment, however, incompatible devices would still have
to be monitored separately. It is important to note
that, the use of a multilevel secure computer system
does not necessarily reduce the physical security
requirements. Physical devices must still be provided
?rotection consistent with the classification level of
he information they process.

As the number of computerized processing systems with

external communications capabilities grows, the need to have

a trusted secure interface between system users and external

communications devices becomes increasingly important. Use

of a multilevel secure computer system as a secure front end

interface can greatly enhance overall system security.

Functioning as both an external communications interface and

internal traffic manager, the trusted computer system

provides the project manager with centralized control over

access and distribution of sensitive information.

62

www.manaraa.com

APPENDIX A

TERMINAL UTILITY PROGRAM LISTING

The terminal utility program is compiled and prepared

for execution in almost the same manner as the system

manager application program discussed in Appendix A. By

modifying certain parameters which are identified in the

program listing, the system manager can specify the physical

port and terminal number of the remote terminal process.

Once copied to the bootable disk which includes the oper-

ating system generation (SYSGEN) program, the tl-util. cmd

and t2-util. cmd files are automatically entered in the

secure volume created using the sysmgr. ssb file. To enter

additional terminals, the sysmgr. ssb file would have to be

modified to specify the entry number of the new terminal

utility program. A listing of the tl-util. kmd file which is

used to create the tl-util. cmd file is included following

the terminal utility source code listing.

63

www.manaraa.com

program name: tl_util.txt

date : 18 feb e6

author: P. J. Corbett Lt./USN

for: AEGIS Modelling Group

advisor: Prof. Kodres

purpose: This program is initiated when a terminal
process is created by the system manager process
(sysmgr.txt). It allows the terminal operator to enter
and send messages via the sysmgr process, as well ^s dis-
play incoming messages. Message specifications and
terminal access level are determined by the sysmgr process
and passed to the terminal process in its rl_process_def
record. Other system constants are provided in the
mgr-typ.zli and mgr-con.zli files. I -icon lag and outgoing
buffers are used to store messages. Evertcounts for these
segments are used to synchronize syster communications.

module tl_utii;

const

{ system constant include files }

{>i gat e-con . zl i}

{$i rl-con . zli

}

(si mgr-con .zli}

t_phys_dev = 5;

term num = '
1

'

;

{ physical pert to which }

{ terminal is attached }

type

{ common type include files

64

www.manaraa.com

{$i gate-typ.zli}

{$i lib-typ.zli}
{Si rlp-typ. z 1 i

}

{si mgr-typ.zli)

{ library procedure include files }

{$i lib.zli}

{$i io. zli}

{$i gate. zli}

{$i seg-mgr.zli}

prcc_name: input_mess

purpose: This procedure allows the operator
to input a message into the outgoing message buffer.
Characters are input into 8 byte blocks so that they
will he compatible with the data encryption device.
The character '$' is used to indicate the end cf the
message. The intial block is reserved for the
address header. Format cf the header is as follows:

blk[l] CI"! : source
blk[l] [2] : destination
blk[l] [3-5] : message number
blk[l][6]: classification
blk[ll [7-P] : number of blocks in ms r;

S ource , destinat i on , and numter of blocks are entered
in this procedure. Remaining entries are filled in
by the sysmgr process prior to transmission.

procedure input_me ss (c omn_buf : in teger 5

var buf s tat : bool ean)

J

'}

www.manaraa.com

var
mess_rec: buf_rec?

blk_cnt: string;
temp_ptr

,

input_ptr: pointer?
charin:char;
i

, j F i, success: integer?
count: integer!
croc sue: boolean?

begin {input_rT:ess}

{ create pointer to start of input buffer }

input_ptr : =1 ib_mk_pntr(Id t_tab le , corrn_buf , 1) ?

temp_ptr:=input_ptr ?

clr_screen(proc_suc);

putln (w_dev, 'en ter message to be transmitted");
putln(w_dev , Renter a $ to indicate end of msg')?
putln(w_dev

,

'
'

)

;

{ initialize rrsg block counter }

i:=i:

{ tegin character entry loop }

while(chariri <> '$') and
(i <> rress_buf _si ze+1) do tegin

{ block 1 is addr, block 2 is strt of nsg }

i :=i+l?

{ tegin loop to read 8 char for each block }

for j:= 1 to 8 do begin

if char in O '$' then begin

getchar(r dev
,
charin)

;

mess_rec . b~l ock [i] [j] : = charir;

66

www.manaraa.com

{ echo character input }

putchar(w_dev , char in)

5

end else

{ if charin='$' then pad the remain-
ing entries with '$' to avoid sending
an incomplete block }

mess_rec .block [i] [j"| : = '$';

end; {for}

end; {while}

{ insert sentinel at end of buffer in case input
buffer size was exceeded }

mess_rec . block [mess_buf_si ze] [8] : = '$';

{ count keeps track of number of blocks input }

count : =i

;

{ fillin address block s ource ,dest ,and num_blk }

mess_rec.num_blk:=count;
mess_rec . block[l] [1] := term_num;

putln(w_dev
,

'
'

)

;

putln(w dev, 'enter destination terminal number';;
getcharTr_dev ,mess_rec .blockfl] [2]);

putchar (w_dev
t mess~rec .blockll] [2]);

putln(w_dev, ' '
)

;

binascii(count,3,blk_cnt,'0') ;

for i:= 1 to 2 do
mess rec .block [1] [i+6] : = blk cnt[i];

{ place mess_rec in outgoing message buffer to
await transmission }

move' mess _rec,temp_ptr~,sizeof(me ss_rec));

buf_stat: =true;

putlnf w_dev
,

'message input complete');

67

www.manaraa.com

end; {input_mess}

proc name: xmit_mess

purpose: This procedure alerts the sysmgr
process that the operator desires to transmit the
message stored in the outgoing message tuffer. This
is done by advancing the outbuf eventccunt. The
sysmgr process notifies the terminal process that
the message has "been sent ty advancing the intuf
eventcount .

...
}

procedure xmi t_mes s(intuf _slot : integer; outtuf

_

slot : integer;
var intuf_evc rinteger ;

var xmit_huf_stat

:

tooleen)

;

var

success

:

integer;

tegin {xmit mess}

end

{ notify sysmgr, msg ready to xmit }

advance(outtuf_slot, success) J

show_err
('

outtuf advance error ', success) ;

{ await sysmgr xmit complete notification }

awai t (in tu f_s lot, in tuf_evc+l, success);
show_err(

'

await intuf error ', success)

;

intuf_evc:=intuf_evc+i;

putl n(w_dpv , 'message transmission complete');

xmi t._tuf_s tat : = fa lse;

{xmit mess}

68

www.manaraa.com

prcc name: disp_mess

purpose: This procedure displays the
message stored in the incoming buffer segment
is similar in structure to input_mess.

It

procedure disp_mess (comn_tuf

:

integer;
var rec_buf_stat: boolean)

;

var

disp_rec :buf_rec

;

disp_ptr:pointer?
d_char :cha r>

i t j: integer;
proc_suc: boolean;

begin {disp_mess}

{ create pointer to incoming message buffer segment}
disp_ptr:= 1 it_mk_pntr(ldt_table, comn_tuf , 1)

;

clr_screen(prcc_suc) ;

putln(w_dev , 'begin display of received message');

{ place contents of incoming message buffer into
iisp_rec }

move(disp_ptr~ ,disp_rec, sizeof (disp_rec))

»

{ check incoming message for error message which
is indicated by a source of 'fl' }

{ if no error message then begin display }

if disp_rec. block [1][1] <> '2
' then begin

putstr(w_dev
,

'message from terminal');
put char (w_dev,disp_rec .block [1] [2])

;

putln(w_dev, ' '
) ;

putln (v_dev, 'message follows — ');

putl n(w_dev, ' '
) ;

i:=i;

69

www.manaraa.com

{ output inbuf contents to terminal }

while (d_char <> '$') and
(i O mess_buf _si ze+1) do begin

for j := 1 to 6 do begin

if d_char O '$' then tegin

putchar(w_dev

,

disp_rec . bl ock [i] [j]);

d_char:=disp_rec .block [i] [j]

>

end; {if}

end; {for}

i :=i+i;

end; {while}

end else begin

putln(w_dev, 'message from system manager'");
putln(w_dev, 'security violation') ;

putl

n

(w_dev, 'improper dest access'};
putln(w_dev , 'message net delivered');

end; 'if}

putln(w_dev
,

'end cf message');

rec_buf _stat r=f alse;

end; {disp_mess}

www.manaraa.com

proc name: logoff

purpose: This procedure disables the term
and makes the resources assigned tc the terminal
process available. No new terminal process is
created to replace it.

procedure logoff (init:rl_proc ess _def);

var
suc,success:integer;

begin {logoff}

putln(w_dev

,

'terminating child segments');
{ to reinitialize a terminal process at this term,
process segments would have to be terminated prior
tc the self_delete call }

putln(w_dev
,

'self deleting child process now');
putln(w_dev, 'terminal off-line');

detach (w_dev)

;

detach (r_dev)

;

self_delete(ir.it.initial_seg[stack_offset] , success) ;

if (success O no_error) then begin
at tach(t_phys_dev t

w_dev ,f alse , sue)

;

at tach(t pr.ys_dev ,r_dev , true , sue } ;

show_errC'child self delete error '
, success)

>

end; {if}

end; {logoff}

71

www.manaraa.com

proc name: shcw_err

purpose: This procedure is called to
display the success code of the resource mngmnt
call if it is other than zero. If the success code
indicates no_error then no message is output.

procedure show_err (str: string; code : in teger)

;

begin {shcw_err}

if code <> no_error then "begin
putstr(w_dev, str) >

putstr(w_dev, ' '
)

;

end:
end; {show err}

putdec(w_dev,code) 5

putln (w dev f
'

) ;

proc name: clr_screen

purpose: Clears display scree

procedure clr_screen (proc _suc : "boolean) J

var

i : ir teger;

be^in {clr_screer.}

for i := 1 to 25 do
putln (w_dev

,

'
'

)

>

end ; {clr screen}

72

www.manaraa.com

J" 3jc if if if if if if if if. if if if if if if if if if if if if if sje s,*: ^«# j^ ;{< # if# ^«* #* * ## #* * >!' '!* 'Is ### #
if if if if if if if ifif ^s if if if if if if if if if if if if if s)e if if if if if if if

proe name: main

purpose: This procedure provides a rrode
selection menu for the terminal operator. It moni-
tors buffer status and calls the appropriate proc
dependent on the mode selection entry.

%* %'* *'* » r * »* »'- »•* »'*»•* » ' j »'* »l» »'» »'»»'* V* *** V* *V V* *'» »** *'? V* *** *'* V* *•***» »** »'* »** *'* ** %'* »•<» *** %'*»'» fc'* *** »'* «v %<« »'» »'* *** *'*
»,» ^* *^» *,» *i» *j» *,» *,»»,» ?,» *|» *|* »,-. *,»*,. ->,«> *,^ >

p

x .»,* *,' #-,% *,* *,>. *-,* ..,» , ,» 3,% wfiffi *j* *|» *,» »,-» J,» ..-,*,. >
(
« J,» <)» *,-. *,^ *,h ^,i *,i » .- -,- *,- »,»

procedure main(var init : rl_process_def)i

var
success : integer;

seg_nu rr : integer;
mode :char;
xmit_buf _stat , rec_buf _s tat

:

boolean?
temp_str:string [1]

;

i , level : integer;
inbuf_evc: integer;
s tk_evc : in teger

;

sys start : boolean;

begin {main}

{ initialize terminal process parameters }

xmit_buf^stat:=false5
mode : = '0*";

{ sy s_star t=f al se for twerminal 1 only all
other terminals should have sy s_s tart=true}
sy s_start : =false

;

inbuf _evr : =0

:

{ attach terminal as read/write device }

attach(t_phys_dev, w_dev, false, success);
attach(t phys_dev,r_dev, true, success)

;

show_errT attach term read device error ', success ;

'

putln(w_de v ,
' ')

;

putln(w dev,
'

terminal active term number');
putcharlv_dev, term_num)

;

put In (v/_dev ,
' '

)

;

77

www.manaraa.com

{ stack eventcount is advanced to notify
sysmgr that terminal is activated }

advance (in it . initial_seg[stack_of f set] .success)

>

show_err(' stack advance error ', success)

I

{ loop until operator enters
while mode <> 'e' do begin

e' to indicate logoff }

{ inbuf_evc is used to have the terminal wait after
transmitting a message until a reply is received
from the dest term. It is initially advanced for
terminal 1 to start the system and then is advanced
upon receipt of an incoming message }

aw ait (init. initial _s eg [inhuf _of f set] f inbuf _ eve +1, success)

5

show_err('await incoming message '
, success)

J

inbuf _evc :=inbuf _evc 4-l>

{ sys_start is used to avoid the 'display incoming
message' prompt at terminal 1 when the system is

started. Once the system is operating it will
always he true }

if sys_start= true then "begin

rec_tuf _stat :=true;
putln(w_dev, 'display incoming message');

end; {if}

sys_start :=true;

{ inner loop is used to indicate that a

message has been sent and alert the operator
that the terminal is waiting for a reply]
while mode < do h

e

g i

n

{ help menu consists of a display of term
access level, and a display of possible
modes }

pu tstr(w_dev,
'

terminal compromise level
level*= init. root access . compromise [1]

;

case level of

0: put

]

n(w_d ev

,

'unclassi f ied '

)

2: putln(w_dev
t
'confidential ' ">

74

www.manaraa.com

4: putln(w_dev t 'secret ')

;

6: putln(w_dev , 't op secret');

end; {case}

putln(w_dev ,

'enter mode desired');
putln(w_dev, 'i= input message');
putln(w_dev, 'd= display received message');
putln(w_dev , 'x = transmit message');
putln (w_dev, 'e= logoff);
putln(w_dev, ' '

)

;

put str(w_dev, 'enter mode here');

get char (r_dev ,mode)

;

if mode= 'i' then begin

if xmit_buf _stat= false then begin

{ enter message to be stored in
outgoing message buffer }

input mess (in it .initial s eg [cutbuf ^offset] ,

xmit_buf_stat)

;

end else begin

putlr_(w_dev
,

'message waiting to be xrcit'}»
end;

end else if mode= 'd' then begin

•? f rec buf stat= true then begin

putln (w_dev t 'entering display module');
{ display contents of incoming
message buffer }

di sp_rress(init . initial _seg [intuf _off set]
,

rec buf stat) ;

end else begin

putln(w_dev
t

'

incoming buffer emnty');
end;

75

www.manaraa.com

end else if mode= 'x' then begin

if xmit_tuf _stat= true then tegin

putln(w_dev ,' sending message to te xmit');
xmit_mess(init .initial_seg [intuf _cf f set!

,

init.initial_seg[outbuf offset] ,

inDuf_evc,xmit_Duf_stat7;

end else "begin

putln (v/_dev , 'outgoing "buffer empty');

end;

end else if mode='e' then begin

putln(w_dev , 'logoff process initiated');
logoff (init);

end else

putlnf w_dev , Vode entry error try again');

{ end of inner lcop-etit after msg xmit }

end; {while}

:utln |'w_dev, 'waiting for incoming traffic');puun ' w_cev, waiting tor in com
{ reset mode selecticr value }

moie:='0';

end; {while}

7c

www.manaraa.com

put In (w_dev
,

'end of terminal 1 process');
detach(w_dev) ;

detach(r_dev);

{infinite loop to avoid crash}

while true do;

end; {main}

modend

.

77

www.manaraa.com

{»** *V »*» »V V* »•* »'**J* »V »'*»'* V* »** •** ^ ,* »'* *** »'» V* *'* »'* »'* V* *'* *** *** »'*»'* *** »V *'* V» V^ »•**** »•* O* V* *'**!» *'* »•# »•* V« V* »'* V* *'* *'f *'- *'* *'* *'* V* ***
^l* «|« •,. «-,v J,* ^,- *>,»>,» *-,* #|* »,» *,* -,» »,-. ?p *,. rf* *p J,-. »,» «,* 'I' *|* *f* *f 'I

-* ','"'1* f* '.'" •'I* "T* *»* *i"* 'l"* 'I s •'i" 'I
-* '|*'l* *t* *» *l* 'l S I* > l"")l* 'l* 'l"- *t* *!**!* 'f *f* *|*

program name: t#-util.kmd

author: P.J. Corbett, Lt., USN
date : 28 Feb 86
purpose: This program is used when linking the

terminal utility program after it has been successfully
compiled. It eliminates the need to enter the names of

the modules the program is to he linked with each time
a new version cf the program is compiled.

note: the actual t#-util.kmd file contains only
one line. Any additional information will cause an
error when the pascal MT + linker is called. To adapt this
file for a specific terminal the '#' in the program name
is changed to the terminal number, tl-util, t2-util etc..

< »•* »* %v • *** %** y* »*< »*<• »•* %•* »* v* »'» *a+ *** •»** *•* »•* **» *** o# *j>» »** »•* »'» *'#»•* %»* »•* »'* *'* ** »'* •** V* v* »** V* »v *** *•* *•* »'* *'* *'* »•* *'* v* **» »'* *'* *'* *** v* T
t > • I ' *•* *l **^ *1* *l* *t* *>* *•* *1* *l* *l* *l* *l* *l* *l* *(* *l* *(* *l* *l* *l* *l* *l* *|* 'I* *t % *|* *|* 1* •*!* *l* *t* *l* *^* *l* *|* *l* *1* ** *1» *l* *l* *|» 1* *|* *|* *l* *|* *|* *|* *1* V

b:t#-util=b:rl-init,b:t#-util
t b:rllib/s,b:cc/s,paslib/s/p:S0

?p

www.manaraa.com

APPENDIX B

SYSTEM MANAGER PROGRAM LISTING

The source code for the system manager application

program (sysmgr.txt) is written in Pascal MT+. With the

exception of the mgr-typ. zli and mgr-con. zli files, all

included files are library utility programs which were

delivered with version 1. 3 of the Gemini operating system.

Information concerning how to invoke library functions is

contained in [Ref . 14]. Once the text file is compiled, the

required modules are linked together by using the sysmgr. kmd

submit file with the Pascal MT+ linker. A listing of this

file is provided immediately following the source code

listing. Upon completion of the linking process, the

resulting sysmgr. cmd file must be prepared to run in the

Gemini Secure Operating System (GEMSOS) environment. This

is accomplished by transferring the sysmgr. cmd file to the

bootable disk which contains the operating system generation

(SYSGEN) program. Procedures for running the sysgen program

are contained in [Ref. 17]. A listing of the submit file

sysmgr. ssb which contains the application segment hierarchy

used in the system generation process is included at the end

of this appendix. Once a secure volume is created on the

disk, the Gemini system is reinitialized using the secure

volume. This begins execution of the system manager appli-

cation segment.

79

www.manaraa.com

program name- sysmgr.txt

date : 16 f et 86

author* P. J. Corcett Lt./USN

for: AEGIS Modeling Group

advisor: Prof. Kodres

purpose: This program is initialized as a multi-
level process which allows the sysmgr to configure and
operate a multi terminal communication system. It relies
on information contained in the mgr-con.zli and mgr-typ.zli
files as well as interactive inputs to determine config-
uration parameters. Once initialization is complete, the
system runs independently allowing remote terminal users
to trarsmit messages via the multilevel secure front end
process

.

}

module sysmgr;

{ constant include files }

const

{$i mgr-con . zli}
{ii gate-^on . zli}
{$i rl-con.zli}

{ type include files }

type

{$i gate-typ.zli}
{$i rlp-typ.zli}
{$i lih-typ.zli}
{ > i frst-typ.zli)
{$i mgr-typ.zli}

{ litrary include }

{$i io.zli}
{$i gate, zli

}

{^i seg-mgr.zli}
{$i cc . zli }

80

www.manaraa.com

{$i lic.zli}

proc name: parm_input

purpose: This procedure allows the
sysngr to input system parameters necessary to test
system operation .

procedure parm_input (var sys_rec: sysmgr_rec;
proc_suc: boolean);

var

temp_str : string;
t emp_char : char

;

temp_int :integer;
i : in teger;

"begin {parm_input}

putln(v_dev, '"begin entering system parameters');

putln'w dev, 'enter physical

'

port 1 for external comm');
ge t era rTr _de v , temp _ char)

;

putchar(w_dev
t temp_char) ;

sys_rec.comm pcrt[l] : =ord(t emp_char)-4S

I

pu tln(w_dev, 7
');

putln(w dev, 'enter physical port 2 for external comm');
ge tcharCr_dev , temp_char)

;

putln(w_dev, temp_char) ;

sys_rec.comm port [2l : = ord(temp_char)-4S;
pu tin' w_dev , ')

;

sys_rec.ch_size :=400;

putln(w_dev
, 'child size is');

61

www.manaraa.com

put dec (w_dev jS^s_rec .ch_size) ;

putln(w_dev, '
) ;

putln(w_dev, ''buffer size is 100 bytes');

sys_rec .b_size:=lP0;
putln(w_dev, ' '

)

;

putln(w_dev, 'enter terminal access level');
putlnf w_dev, 'unclass=0 ')

>

putln(w_dev, 'conf=2 '
)

»

putln(w_dev, 'secret =4')

;

putln(w_dev, 'ts=6')J

putln(w_dev, 'en try must "be within sysmgr access range');

for i:= 1 tc num_term do begin

putstr (w_dev
t
'terminal');

putdec(w_dev, i)

;

putstr(w_dev , 'access level is');

getchar (r_iev, temp_char)

;

putchar(w_dev, temp_char)

;

temp_int :=ord(temp_char)-4S;

{ fill access_class record with entered class }

fillchar(sys_rec.ch access [i| . sizeof

(

access _c lass) ,

chr Ttemp_int))

;

putl n(w_dev, ' '
) ;

end; {for}

putln (w_dev
,

'en ter 3 character crypto key (no echo)');

for i : = 1 to 8 do begin

getchar(r_dev,temp_char) J

sys_rec .key [i] :=ord(terrp_char)-48»

end; {for}

putln (wjev, 'crypt o key inserted');

{ fixed parameters }

{ rode segment entry numbers }

82

www.manaraa.com

sys_rec ,chld_ent
sys~rec .chld_ent

;i]:=6J
.2] :=7J

putln (w_dev , 'parameter entry complete');
end? {parm_iaput}

{

proc name: sys_config

purpose: This procedure configures the external
communication ports identified in parm_input for port tc
port communications with flow control. They are attached
to read and write sequentially 8 "bytes at a time to be
compatible with the data encryption device.

procedure sys_config' send_port: integer?
recv_port: integer;
var conf ig_suc :boolean)

;

var

rd_dev , wr_dev : dev_name;
rd_parm

,

wr_parm : dev_parm_rec

;

success : integer;

tegin { sys_ccnfig }

config_suc:= false;

putl r>(w_dev, 'configure transmit and receive ports');

{ attach xmit and recv ports for computer to computer
communications }

{ fill-in at tach_device calling arguments }

{ receiver s hoi: Id te attached first }

rd_dev . name : = sior;
rd_dev.nur:- recv_pcrt;
ri dev .d type := ic

;

rd _parm . si or .mrl : = S04d;
rd_parm.s i cr .mr2 := $0?e;
rd_parm.sior.io_mode:= rts_oflcw;
rd oarm.sicr .max := 8

J

{ device mode entries }

www.manaraa.com

rd_parm.sior ,delim_active:= false;

attach_device(rd_dev,recv_slt , rd_parm, sue cess)

»

show_err(' receiver attach error ' ^success)

;

{ attach transmitter }

wr_dev . name : = siow;
wr_dev . nurr: = send_port;
wr_dev .d_type := io»

wr_parm. siow . rrrl := $04d; { device mode entries }

wr_parrn.siow.rrr2 :- $03e>
wr_parm.siow.ic_mode:= asrt_none;

attach_device(wr_dev,xmit_slt , wr_parm .success);
show_err('transmit ter attach error ', success) >

putln(w_dev, 'comm devices attached');

{ xmit and recv attached computer to computer no flow
control }

corf ig_suc := true;

end; {sys_config}

{•

prcc name: comm_tst

purpose: This procedure checks communications in
coth directions ty transmitting a test string of data. Once
communications have reen checked the comm devices are
detached.

}

procedure comm_t st (ini t : rl_process_def ;

send_port: integer;
recv_port: integer;
va r c omm_ts t_suc : boolean);

var

chari'1 ,charout : array [1..S] of char;
wr__c lass, rd_ class: access _c lass;
i , success : integer ;

size: integer;

84

www.manaraa.com

begin { comm_tst }

comm_tst_suc := false?

putln(v_dev, "begin comn test');

{ transmitter access_class for comm test }

wr_class. compromises init. resources ,max_class. compromise;
vrr_class. integrity := init .resources. min_class .integrity ;

putstr(w_dev
,
'outgoing string is ')>

for i := 1 to 8 do tegin

cherout [i] := '

t
'

;

putchar (w_dev , charout [i])

;

end; {for}

putln(w_dev ,
'• '•)

J

vrite_secuential (xmit_slt,addr(charout) ,? ,wr_class, success) ;

show_err('write sequential error ', success)

;

read_sequential (recv_slt,addr(charin) ,size,wr_cl
shcw_er r(

' read sequential error ', success) 5

for i : = 1 to 8 do

putchar (w_dev ,chari n [i]);

put ln(w_dev, ' ')

;

detach _device(xmit_slt, sue cess);
show_err (

' transmi t ter detach error ', success)

;

detach _deyice(re cv_slt .success) ;

shcw_err('receiver detach'
, succes s)

j

pu

t

ln(w_dev

,

'comm test complete');

comm_tst_suc := true;

end ; { cemm tst }

lass , success)

}

85

www.manaraa.com

prcc name: att_crypto

purpose: This procedure uses four process local
device slots to attach the required encryption and
decryption devices. Crypto key and feedtack key are pro-
vided in the procedure call. Devices are attached using
the cipher block chaining (CBC) mode.

procedure att cryptof cry_key : bufS;
cry_fbkey: buf85
var att_crypt c_suc : boolean);

var

rerdev , wendev ,rdedev ,wdedev : dev_rame;
ren_parm , wen_parm f wde_pa rm , rde_parm : dev_pa rm_ rec

;

success: integer;

begin { att_cryptc }

att_crypt o_suc := false;

{ attach read encryption device }

r end ev

.

name : = dcp_ren;
rendev.num:= 0;
rendev.d_type := io;

ren_parm .ren .blk_si ze : = 8; { 8 bytes per blk }

at tach_device(rendev , ren _sl t , ren_p arm , success ;

;

show_err('at tach ren device error ', success)

;

{ attach write encryption device }

wendev. name: = dcp_wen;
wendev. num:= 3J
wendev .d_type:= io;

wen_parm .wen .mode := 1J {1 for CBC mode }

wen_parm .wen .key := cry_key;
wen_parm . wen . f b_key := cry_fbkey

;

86

www.manaraa.com

attach_device(werdev,wen_slt
r
wen_p arm, sue cess);

show_err('attach wen device error ' .success)

>

{ attach read decryption device }

rdedev. narre : = dcp_rde;
rdedev.nurr := l;

rdedev. d_type := io>

rde_parrn .rde .mode: = 1»
rde_parn.rde .key := cry_key»
rde_parrr . rde .f "bkey : = cry_f tfceyj
rde_parm.rde. tlk_si ze := 8i

{ 1 for C?C mode }

a t tach _device (rdedev,rde_slt, rde _p arm, success"1

;

shcw_err('at t ach rde device error ', success)

;

{ attach write decryption device }

wdedev . r arre : = dcp_wde;
wdedev.nurr; : = i;
wdedev. d_type := ioi

{ wde_parTi is blank record }

at tach_device (wdedev, wde_sl t, wde_parr .success)

;

show err('attach wde device err or ' .success)

j

at t_crypt o_su~: = true;

end; { att_crypto }

{

proc name: crypto_tst

purpose: This procedure verifies that the
encryption and decryption devices are working properly
A test strirg is encrypted then decrypted using test
keys. "Results are output to the sysmgr terminal. Whei
complete ell de ta ciphering devices are detacnec

.

procedure crypt c_t st

(

ini t : rl_proces s_def ;

87

www.manaraa.com

crypto_tst_suc : boolean);

var

encryptin ,encryptout ,decryptout : array [1..8] of char;
wr_class , rd_class : access_class J

size: integer;
i: integer;
success: integer;
proc_suc: boolean;

begir. { crypt o_tst }

crypto_ts t_suc : = false;

putln(w_dev, 'begin crypto device test");

wr_class. compromise :=init.resources.max_class.ccmpromise;
wr_c las s. in tegrity:=ini t .resources .min_cl ass. integrity;

putstr(w_dev

,

'crypto test string is ');

for i:= 1 to 6 do begin

encrypt in [i] := 't ';

putchar(w_dev f encryptin [i]);

end; {for}
putln(w_dev, ' '

) ;

{ write test string to encryption device }

write_sequertial(wen_slt , ad dr(encryptin) t 8,wr_class ,

success);
show_err('wen siow error ', success)

;

{ read encrypted strirg }

read_sequential(ren_slt,addr(encryptout),size,rd_class,
success)

;

sh ow_e rr(' ren sicr error ', success) ;

putstr (w_dev , 'encrypted string is ');

for i : = 1 to 8 do
put char (w_dev, encrypt out [i])

J

putl n(w_dev ,
' '

) ;

{ write encrypted string to decryption device }

8S

www.manaraa.com

write_ sequential (wde_slt,addr(encryptout),8,wr_class t

success);
shov_err('wde siow error ' .success)

;

{ read decrypted string }

read_sequ ential(rde_slt, add r(decrypt out), si ze,rd_class,
success)

;

show_err('rde sicr error ', success)

5

putstr(w_dev , 'decrypted string is ')»

for i :•= i tc 5 do
put char (w_dev f decrypt cut [i])

»

putln(w_dev, '
'
)

;

putln (w_dev, 'crypt o test complete');

{ detach encryption/decryption devices }

det_crypto(proc_suc) ;

crypto_tst_suc := true;

end; { crypto_tst }

{•

prcc name: tern_prcc_create

chil
spec
code
the
rrent

cent
comrr

top
Fina
Proc
rr p ss
cedu

purp
d nroces
if led by

segment
child pr

s a re pa
a ins the
or messa
ass rress

lljf a ro
ess loca
age buff
re when

ose: This procedure .creates a single level
s for a user terminal using the parameters
the sysmgr in parm_input. The chili process
is a terminal utility program which attaches

ocess at the desired physical port. Four seg-
ssed to the child process. The stack segment
ch_in it : rl_process def record. The two

ge buffer segments Tinbuf and outtuf) are used
ages between the parent and child processes,
de segment is required for all chili processes
1 segment numbers as well as pointers tc the
er segments are passed back tc the main pro-
the chile

1 process has teen created.

69

www.manaraa.com

procedure term_proc_create(in i t : rl_process_def

;

ch_parrn: sysmgr_rec;
chld_num: integer;
var stk slot : ch_array

I

var cuttuf_slot : ch_array;
var incuf_slot: ch_array;
var cut_ptr: pointer;
var in_ptr: pointer;
tern create sue: boolean);

var

ch_cde_seg_num : ch_arrayj
pt_seg_num: ch_arriy;

chld_entry: integer?

ch_init: rl_proces s_def

;

ch_addr_rec: rl_addr_array;
rh_reg_rec: rl_reg_record

;

ch_res_rec: rl_res_record;
ch_seg_list: seg_array;

5tk_init_ptr : ~rl_process_def ;

stk_ptr: var_pointerJ
intuf _ptr , cut tuf _ptr : array [1 . .num_terrr] of pointer;

seg_mgr_'by tes : integer;

stack_size , chid

_

size, tuf_size : integer;
stk_evc_val: ch_arrayj
si ze

,

success : integer;
i,j: integer;
class^access class;

"begin { tern_proc_create }

terrr_create_suc :=f alsej

{ initialize child parameters }

chld_size:= ch_parm . ch_si ze

;

buf_size:= ch_parrc .t_size;
j : = chld_nurr ;

chld_entry:= ch_parm . chld_er.t [j] ;

92

www.manaraa.com

create, makeknown, and swapin as appropriate, child
segments

=}

{ makeknown terminal utility code segment located at child
entry numter specified in sysmgr.ssb file }

seg_make'*ncwn(init .initial _seg[root_of f set] ,chld_entry ,

ch_cde_seg_num [j] ,r_e

,

size t class, success) >

show_err('makeknown rhild entry off root error ', success)

;

{ create and makeknown child process "base }

seg_ create (init . in itial_s eg [code_offset] , chld_num,£ , succe ss) 5

shcw_err('creat e process "base for child error ' .success) ;

seg_nakekncwn(init. initial _s eg [code_offset],chld_num,
pt_seg_nuTi[j] ,r w, size, class, success);

sh3w_errT 'makeknow n chiTd process base error ', success) ;

{ determine required size for stack, it must te large
enough required information for child initialization. This
expression was adapted from the pro-tst.zpa proress
creation demonstration program }

seg_mgr_ty tes := si zecf (stack_header

}

+sizeof (kst header)+
(sizeof(kst_entry) :;: init. r. urn _kst7>

stack_size:= rl_stack_size+vect_si ze+seg_mgr_ty tes

;

{ create, makeknown, and swapin child stack segment }

seg_create (pc_seg_num [j] ,0, stack_size-l, sue cess) J

show_err

(

'create child stack error ', success)

I

seg_makeknown^ pt_seg_num
[j] ,2 ,stk_slct f j] ,r_w,size,

class , success) ;

sh ov_err('makekn own child stack error ', success) »

svapin_seginent(stk_slotfj] , success ^

;

show_err('swapin child stack error ', success) i

{ stack eventcount is used to notify sysmgr that the
terminal process is activated. It is also used as an
entry in the ch_init record }

read_evc(stk_slot[j], stk_evc_val [j] , success);

show_err('read stack eve error
'

.success)

j

91

www.manaraa.com

{ create message buffers }

{ outgoing message buffer }

seg_create(pb_seg_run [j] ,l,buf_size, success);
shcw_err

(

'create outbuf error ', success)

;

seg_makekncwn(pb_seg_num [j] ,l,outbuf_slot [j] ,

r_w, size, class, sue ceis)

;

show_err(' outbuf makPknown error ', success) 5

swapi n _ segrrentC outbuf _ si ct[j], sue cess);
show_err('outbuf swapin error ', success) J

{ incoming message buffer }

seg_create(pb_seg_rum [j~l ,2,buf _size , success)

;

shbw_err('creat inbuf error ', success) >

seg_makekn owr (pb_seg_num [j] ,2 , inbuf _slot [j] ,

r_w, size, class, success)

»

show_err('inbuf makeknown error ', success)

»

swapin_segment (inbuf_slot[j]
, success) ;

show_err(' inbuf swapin error' , success)

5

{ fillin ch_seg_list }

{ ch_seg_list determines order in which segments are passed
to the child process }

ch_seg_list [stack_of

f

set] := stk_slot[j];
ch_seg_list [code_of f set] :=ch_cde_seg num[j] ;

eh_seg_list [root_of f set] :=ini t .initial_seg [rcct_of f set] ;

ch_seg_list [outbuf _off set] := ou t buf _sl o t [j]

;

ch_seg_li st [inbuf _off set] := inbuf _ si ot [j] ;

{fillin child init record }

{ ch_in
process
ch_ini t

ch_ir.it
ch_init
ch_init
ch_ini t

{ prior
proces s

c h _ i n i t

liUnt
rh init

it rec
when
.cpu: =

.nun_k

.root. _
•s_seg
•s_seg
i t y is
or to
. resou
eger_t
.rescu

ord i

creat
init

st :
=

acces
:= st

_even
impo

ensur
rces.
o_b?4
rces.

5 P
ed

.cp
ini
s: =

ack
t: =

rta
e p
pri
(ch
pro

la

}

u;
t.

in
_c
s

nt
ro
or
Id

ce

ced on stack for use by child

i t .root_access j

ffset;
tk_evc_val [j]

;

in multiprocessing with a single
per synchronization }

ity:= init. res ou rces .priority -10;
_size,ch_init . resources. m em oryi >

sses := 25

92

www.manaraa.com

ch_init .resources. segments : = 90;
{ min_class and max_class determine the access level of
the child process. Since the terminal process is single
level, they are the same. Levels are specified by the
sysmgr during the parm_input initialization. }

ch_init .resources. min_class := ch_parm .ch_access [j] >

ch_init.resources.max_class:= ch_p arm. ch_access [j]

;

ch_init .sp2:= !?;

ch_ini t .ring_num := l;

{create stack pointer}

{ stack pointer is offset to start of rl_process def }

stk_ptr.seg:= 1 ib_mk_sel

(

ldt_tatle ,stk_sl ot [j] , ll;
stk_ptr . off : = stack_size-(vect_size+seg_mgr_bytes+

si zeof (rl_process_def))

;

stk_ini t_ptr:=stk_ptr ,p»

{ copy ch_init on to stack }

move(cb_init,stk_init_ptr~,sizeof(rl_process_ief)):

{ create pointers to message buffers }

{ point to start cf message buffer, no offset }

outtuf_ptr[jl := lib_mk_pntr(ldt stable, out buf_slot [j] ,1)

;

intuf_ptr[j] := lit_mk_pn tr (Id t_tab le , in buf _sl ot
[j] ,1)

;

J" fillin remaining' records for create_process call }

{ child address record }

{ a maximum of 5 segments may be passed in ch_addr_array }

for i:= ?j to 4 dc begin

*"h_addr_rec r il . segment _num her :- ch_seg_list [i]

;

{ cede segment must te of type read_execute
_}

{ others are type read_write }

if i = 1 then "begin

ch_addr_nec [i] . segment _ type := r_e;

end else begin

ch_addr_rec[i] . segment _type:= r_wj

93

www.manaraa.com

end; {if}

{ swapin allsegments except rcot_offset }

if i = 2 then oegin

ch_addr_rec [i] . swapin := false;

end else begin

ch_addr_rec [i] . swapin := true;
end; {if}

ch_addr_rec [i] .protection := i;

end; {for}

{ child register record }

ch_reg_rec . ip:= $9?;
ch_reg_rec .sp := stk_ptr.off;
ch_reg_rec . spl := s tack_size-(vect_si ze+seg_mgr_hy tes)

;

ch_reg_rec .sp2: = ?
',

ch_reg_rec .vec_seg := 0;

ch_reg_rec.vec_off:=stack_size-vect_size;

{ child resource record }

{ child 1 is located at ch_res_rec .chli_num= 2 }

ch_res_rec . child nun:= chid num-i;
cn~res~rec. priority := ch_init ..resources .priority »

ch_res_ re c. memory:- ch_init. resources, memory ;

ch_res_rec. processes := ch_init. resources. processes;
ch_res_rec . segment s : = ch_init .resources.segments;
ch_res_rec.min_class:= ch_init . re sources. min_class;
ch_res_rec.max_class:- ch_init.rescurces.max_class;

{ could not pass array of pointers as calling argument
so had to assign to type pointer varieties }

in_ptr:= intuf _ptr { j]

;

out_ptr:= cutbuf _p tr [j] ;

putln (w_dev, 'creating child process now');

create_processCcl":_addr_rec,ch_reg_rec,ch_res_rec, success';
show_err('create child process error ', success)

;

94

www.manaraa.com

{ wait for child process to advance stack eventcount
indicating that child process is active }

await(stk_slot[j] , stk_evc_val [j] +1 , success) ;

show_err('await stack advance error' , success)

;

putln(wdev, 'child process created');

term_create_suc :=true;

end; { term_proc_create }

{•

proc name: xmit_rec

purpose: This procedure takes the message stored
outgoing tuffer of the source terminal, encrypts

lock, and transmits it sequentially, via the
riate external communications port. The crypto-
c is provided ty the sysmgr_rec. The fb_ke^ is the
t which the message is sent. At the receiver the
e is decrypted and stored in the incoming message
of the destination terminal. Access levels of the

d dest are compared. If they do not match the msg
delivered, and an error msg is returned to the

in the
each h
appr op

graphi
time a

me s sag
tuffer
msg an
is not
source

note: ft_key needs to he unique to avoid avoid creating
identical cipher texts when a message is transmitted more
than once. time of transmission may not work in applica-
tions where there is a significant time delay in trans-
mission.

procedure xmit_recv' ch_parm: sysmgr_rec;
orig_term: integer:
dest_term: integer;
o_cut_ptr: pointer?
o_in_ptr :pointer J

d_out_ptr: pointer;
d_ir_ptr: pointer;
var int_mes s_num

:

integer ;

var recv sue: r.oolean);

www.manaraa.com

var

out_rec t in_rec: buf_rec;
in_ptr ,

out_ptr : array [1 . .num_term] of pointer;
time: cc_array>
fbjcey: bufe;
srce,dest: char;
int_dest: integer?
str_mess_num: string?
encrypt out ,decryptin ,decryptout : array [1..6] of char!
i t j: integer;
size: integer;
recv_class,xmit_class,class: access_class;
count: integer;
success: integer;
dest_comp f mess_comp : integer;
proc_suc: "boolean;

begin { xmit_recv }

recv_suc:= false;

putln(w_dev, 'entering transmit /receive module');

sys_config(crig_term,dest_term,proc_suc);
r

{ retrieve message stored in originator's outgoing msg tuf}
move(o_out_ptr~

f out_rec,sizeof(out_rec));

{fill in remaining address block entries }

{ outgoing message number }

out_rec .num: =in t_mess_num;

{ message classification }

cut _rec .block' [l] [6] :=chr (ch_parm . ch_access [orig_t erm] .

compromise [l] +49) J

{ insert message number in address block }

binasc ii (ir.t _mess_num ,4, str _mess_nun ,
'0 '

) ;

for i : = 1 to 3 dc
out _rec. block [1] [i+2] :=str_mess_num fi] ;

{ increment message number counter }

int mess num:=int mess nurn+i;

G«

www.manaraa.com

•[determine ft_key }

•[feedback key is the tire of transmission }

\ this provides a unique initialization vector }

{ attach callerder clock device }

cc_r_attach(cc_slt .success) »

show_err

(

'clockread attach error' , success)

5

{ read calender clock }

cc_r_dev(cc_slt
,
time, succes s)

»

shcw~err('read time error ', success) J

{ transmission time = fb_key }

putln(v_dev
, 'crypt o key is')»

for i:= 1 to 8 do tegin
ft_key[i]:= ord(time[i+7])

J

putdec(wjiev , fb_key [i])

;

end; {for}

detach _device(cc_slt f success);
show_err('clock detach error', success)?

{ transmitter access class }

imit_class:= ch_pa rrr . ch_access [cri 6-_term] ;

{. , .j Jf .',J, .1. »V J. .U J< .', .1* .U »!. ^ ^ J, J, ^ J, J. J. J. ,1* ,', .v ,1, J, j, j* J. J, .^ .'.
*i» *t* +r* *i» *r *i* 'i* 'f* T" nT *<* *f* *** *f* 'i* *r» 'i* *i* *p *r* "t* *t* *t* rt* t* *f* *f**& *i* *"* 'i* 1* *i* *i*

tegin transmit/receive loop }

for i:= 1 to cut_rec .num_blk dc tegin

{ in etc node crypto devices must te reattached to transmit
each block. this is required because trie previous encrypt-
ed tlcck is used as the ft_key to encrypt the next block.}

att_crypto(ch_parm .key ,f t_key
,
proc_suc)

5

[write to encryption device }

write_sequent ial (wen_slt ,addr (out_rec .tl ock [i]) ,8

,

xnit_class, success)

I

shcw_err('wen siow error', success)?

{ read encrypted text }

read_sequert ial(ren_slt , add p(encrypt out), size , class .success)

5

sh ow_err (
' ren sior error ' .success) I

97

www.manaraa.com

{ transmit encrypted "block }

write_ sequential (xmit_slt ,addr (encrypt out),S,xmit_class,
success)

',

show_err('transmit error', sue cess) ;

{ determine fb_key for next "block }

for j : = 1 to 8 do
ft _^ey U1 :=encryptout [j] ;

putln(w_dev f
' '

)

;

r »'*»'> *u» *i* %•* »'* »•* v» »*» »'* »•» •>•* *'» »'.» »•» »•* *'* o« V* »'» »'* V» *'> »'* si'^ »'* «^* *'* »l* »'.«i* .1. »i* « < r +)* »** *'**'» »'* «•* »J* >** «.** *** *•* ••* »'* »V *'* *'* *'* *'* *'* %'* *'* *** *'*

"begin receiving message }

{ receiver access class }

recv_class ;- ch_pa rm .ch_access [dest_term] ;

{ read encrypted text }

read_sequ ert ial(recv_slt,addr(decrypt in), size, class, succe ss)

;

show_err('receive error ', success);

pu t In (w_d ev
,

'received text is')>
for j:= 1 to 8 do

putchar(w_dev

,

decrypt in [j]);
putln (w_dev ,

' ')

»

{ write to decryption device }

write_sequential?wie_slt , addrf decryp tin) ,8 , rec v_class ,

success)

>

show err('wde siow err or ', success)

'

{ read decrypted text }

read_sequer, tial (rde_slt,addr /

'

decrypt out) , size, cl
sh ow_err

(

'rde sior error ', success ; >

put In (w_d ev
,

'decry p tec test is')»
for j := 1 to 8 do begir

in_rec . block [i] [j] : = decrypt out [j] ;

putchar(w_dev, decrypt cut [j])

»

end ;

pu tin (w_dev ,
' ')

;

ass, success } >

{ count is number of blocks in received message }

c ou.it t ^count-4-!
J

{ detach crypto devices to prepare for next block }

det_crypt o(proc_suc)

*

en<i\ {for}

96

www.manaraa.com

detach(xmit_slt)

;

detach(recv_slt)

;

{»'- »<* »l, +Xr »** »i» *,'>«* »'* »'**<* O* »** »'* V* »'**** »** *'»»'* »•» »i* «.'«> »** »l# »'» *** v'* V* *'* *'* *** *'* ***»'* V* *V *'* i!^ *'* *'* *'* 5** *** %t* v,£ S£ *'*
"!» ?i+ #f» *)» »|% *,» #,»»,» *|- *, **p- 't* *T* *.* *i" *»"* 'i* *i* *|* *l^ *•* *i* 1* *** *|* *|* 'I** 1* *l" *t* *i* *i* *l* *P •* *l *l*1* ^ I *t* I • "l t I • i

message transmitted and received }

{ insert number of blocks into incoming record }

in_rec . num_h Ik: = count;

{ decode address "block }

srce:= in_rec. "block [1] [1] J

dest:= in_rec. Dlock [1] [2]

;

putstr(w_dev, 'dest is');
putchar(w_dev,dest);
putln(w_dev, ' ')

;

int_dest:= ord(dest)-4SJ
putstr(v_dev, 'int_dest is');
putdec(w_dev

,

int_dest)

;

putln(y_dev t

' '
)

;

dest _comp := ch_parm.ch_access[int_dest] . c ompromise [1] ;

mess_eomp : = ord (in _rec. block [1] [6])-4Sj
putlnCw_dev , ' '

)

;

put st r (w_de.v , 'dest_comp-mess_comp '
)

;

put dec

(

w_dev,dest_comp) ;

put dec (w_dev ,mess_comp ;

;

put In (w_dev, ' ')

;

{ compare message and destination access levels for
possitle security violation }

if mess_comp <> dest_comp then "begin

{ if srce= '0' then incoming message is an error
message concerning a securit-y violation }

if srce <> '0
' then begin

putl ii(w_dev ,
' securi ty violation message numler');

for i:= ? to 5 do
pi!tchar(w_dev,i.i_rec.tlock[l] [i]);

recv_suc :=f alsei

{ prepare error msg for transmission }

err_msg(srce,d_out_ptr,prcc_ = i'c};

99

www.manaraa.com

end else "begin

{ if incoming traffic is an error msg then
move it to the inconming message buffer of
the destination terminal }

move(in_rec ,d_in_ptr~"

,

sizeof (in_rec)) ;

{ reset recv_suc }

recv suc:=true;

end;

end else begin

{ if nc violation, move msg into incoming msg
tuffer of destination terminal }

move(in_rec,d_ir_ptr , sizeof (in _rec))

»

recv suc:=true;

end; {if}

end; {xrnit rer}

proc name: err_msg

purpose: In the event of a security violation,
this procedure fills destination outgoing tuffer with
an error message. This error message is then transmitted
to the source for display at the originator's terminal.

procedure err_msg(dest :char

;

xmit_ptr : pointer J

var err_msg sue: "boolean);
var

err_rec : buf _rec ;

i : in teger;

begin {err_msg}

1£2

www.manaraa.com

err_rec .num: = ;

{ error msg has only an address block }

err_rec .num_blk :=1

;

{ source of '0' indicates an error message }

err_rec.block[l] [l]:='0'J

err_rec ."block [1] [2]:=dest;

{ remainder of address block is empty }

for i := 3 tc 8 do
err_rec . bl cck [1] [i] :='£';

{ move error message to outgoing buffer of dest term
for transmission back to source }

move(err_rec ,xmi t_ptr~, sizecf(err_rec))

;

end; {err_msg}

proc neme: det_crypto

purpose: This procedure detachs all lata
encryption/decryption devices .

}

procedure det_crypto(var proc_suc:boclean 1

;

tegin {det_crypto}

detach(wen_sl t)

;

detach(ren_sl t)

;

detach (wde_sl t)

;

detach(rde sit);

end; {det_crypto}

{

proc name: show_err

purpose: This procedure i5 called to display
the success code of the resource management call if it is

other than zero. If the success code indicates io_error
then no message is output.

iei

www.manaraa.com

procedure show_err(str: string?
code: integer);

"begin {show_err}

if code <> no_error then "begin

putstr(w_dev, str)

;

putstr(w_dev ,
' ')

t

putdec(w_dev,code);
putl

n

(w_dev, ' ')

J

end;

end; { show err }

{•

proc name: main

pur-nose: This procedure initializes system
operation. It performs comm and crypto checks aid then
creates a single level process for each remote terminal.
Once the system is on-lice, it controls access to the
external communications ports. Messages are transmitted
and received, and security checks are performed on all
incoming traffic.

procedure main' var init : rl_i rocess_def)

;

var

i : integer ;

stk_slt ,tufout_slt,bufin_slt: ch_arra^ ;

buf out_ptr ,tuf in_pt r: arraj [1 . .num_term]
of pointer;

ch_arra^

;

huf out_evc , tuf in_ev c

mgr_rec: sysmgr rec

»

test_key ,test_fbkey : buf8;
mess_dest ,mess_srce : integer;
tempi _port , temp2_port : in tege r

t

success: integer;
ch_num: integer;
proc_suc: boolean;
recv_suc: boolean;
mess_num

:

integer ;

122

www.manaraa.com

tegin {main}

attachdnit. cpu, w_dev, false .success) ;

shcw_err('attach sysmgr siow error ', success) ;

attach(ini t .cpu , r_dev , true , success)

j

show_err('at tach sysmgr sior error ', success)

j

putln(w_dev , 'sysmgr terminal attached');

{• call procedure to enter system parameters }

parm_input(mgr_rec,proc_suc)

»

{ xmit/recv ports for comm tst }

templ_port:= mgr_rec . comm_port [1]

>

temp2_port:= mgr_rec. commjpor t [2]

J

{ configure xmit/recv ports }

sys_corf ig(templ_port, temp2_port ,proc_suc) ;

{ test comm channel pass 1 }

comm_tst(init t
templ_port,temp2_pcrt,proc_suc);

{ reconfigure xmit/recv ports to transmit in opposite iir }

sys_config(temp2_pcrt ,templ_port,proc_suc);

{ test comm channel pass 2 }

comm_tst(init ,temp2_port , tempi _port t proc_suc) ;

{ keys for crypto test }

for i:= 1 to 8 do teg in

test_key[il := i;

test fb key [i]: = i;

end; {for}

{ attach crypto devices in CEC mode }

att_crypto(test_key

,

test _ft key ,pro^_suc);

{ test crypto devices }

crypt o_ts t (init ,pr oc_suc)

;

putln(w_dev , 'system initialization complete');

103

www.manaraa.com

{ loop to create child process for each remote terminal }

for i:= 1 to num_term do "begin

ch_num:= i;

{ create child process }

term_proc_create (init

,

mgr_rec

,

ch num,
stk_slt,
buf out sit ,

tufin_slt,
tuf out_ptr [i] ,

tuf in_ptr [i] ,

proc_suc) ;

putstr (w_dev , 'chll d process created termiral ');

putdec (w_dev ,i) ;

putln(w_dev, ' ')

»

{ initialize buffer event counts }

tuf in_evc [i] := 0;
tuf out_evc [i] := 0;

end; {for}

{ initial mess_dest is terminal 2 }

mess_dest '.= ?.'

mess_num: =0;

{ to start system advance intuf_evc for terminal 1 }

ad va nee (tufin_s It [1] .success) '

show_err(

'

start system intuf advance error ' , success)

;

{ initialize message receipt success value }

recv_suc : =trueJ

tegin independent system operation loop }

while true do tegin

{ inner loop synchronizes terminal tc terminal
communications }

for i:= 1 tc num_term do tegin

104

www.manaraa.com

mess_srce: = i
'

mess num:=mess num+i;

{ check for received message security violation }

if recv_suc = true then begin

{ if no error then wait for next outgoing message }

await (buf out _s It [i] ,buf out_evc [i] +1 .success)

>

show_err('awai t message ready for transmit ', success)

>

bufout_evc[i] := buf out_evc [i] +1

;

putln (w_dev
,

' message ready for transmission'};

{ transmit and receive outgoing message }

xmit_recv(mgr_rec,mess_srce,mess_dest,
buf cut_ptr [mess_srce] , buf in_ptr [mess_srce] ,

buf out _ptr [mess _d est] , buf in_ptr [mess_lest]

,

mess num,recv sue)

;

putln(w_dev, 'message sent');

[not ify message source that message was tmit }

advance (buf in_sl t [mess_srce] .success) I

shcw_err ('advance source infcuf' .success) »

{ check for received message security violation }

if recv_suc = true then begin

{ if no error then notify dest terminal
to display incoming message }

advance(tufin_slt [mess_dest] .success; I

show_err
(

'advan ce dest in buf error ' .success }

;

putln(w_dev , 'msg recvd and delivered'};

{ new dest term is message sree }

mess_dest :=i ;

end else begin

{ if security violation did occur then
transmit error msg back to source. error
msg has already teen placed in outgoing
buffer by procedure xmit_recv. }

105

www.manaraa.com

xmit_recv(rrgr_rec ,mess_dest,mess_srce,
cuf out_ptr rrness_dest] , fcuf in_ptr rmess_dest
tufout~ptrLmess_srcej , tuf in_ptr [rr.es s_srce
mess_num t pr oc_suc) ;

putln(w_dev , 'error nsg transmitted');

{ notify srce of incoming error message }

advance(bufin_slt [mess_srce] .success)

»

show_err

(

'notify srce of error ad vance '
, succe ss ^

;

end; {if}

end else begin

{ if received message had a security violation the
loop will return control to the message source so
that he can display the error message }

{ recv_suc = true to allow display cf error msg }

recv suc: = true;

end; {if}

end; {for}

end; {while}

putl n(v_dev f 'program complete '
) ;

while true do;

end; {main}

modend .

10?

www.manaraa.com

program name: mgr-typ.zli

author: P. J. Corbett, Lt . , USN
date: 28 Feb 86
purpose: This file contains type declarations

used in both the system manager and remote terminal utility
programs. It should be included in the type declaration
sections of "both programs.

»l* ** ** V* *** *** V* *•-»*» *'# »'-%i- «i«y«&i« »<» x 1 - ~V *'* »•*»'* »•* »'* ***»•» k>y« »>**•* »U «»U «J# *•* »'* *'* *,*»'**x'* **> *,** , j» *** »'* »'i»* ,« *'* *'* »'*• »'* »'* •*'* ^'o*'* »'* 1
*(» *f» *(» *|» »(» »(» *)* *|» *i» *,» *i • *,* #,* rf,H *|» *|* *|* *!* »|* *

(
^ *|V » |* .-,•. -,- 0fi r,S rf,% «",»*,•• • ,» J|« ^k *,« »,i r

(
* *j> pp J

t
» *,% *,* #.,» ,, , *,» • ,-. ^,* *!« «,* »,» * ,

. #,* ?,* ,.,-. *,* *,*. L

sysmgr_rec = recora

corm_pcrt : array [1..2] of integer;
b_size : integer;
ch_size : integer;
ch access : array [l-.num term] of access_class ;

chld_ent : array [1 . . num_I erm] of integer;
key: bufS;

erd;

buf_rec = record

nun : integer;
num_hlk: integer?
block : array [l..mess buf_size] of

array T l . . S J of char?

end-;

ch_array = array \l

.

.num_te rn] of integer;

{ end mgr-typ.zli }

10?

www.manaraa.com

program name: mgr-con.zli

author: P. J. Corbett, Lt . USim'

date: 28 Feb 96
purpose: This file contains glotal constants

used "by both the system manager and terminal utility
programs. It must te included in the constant
declaration section of both programs.

num_term = 2'

mess_buf _size = 4;

xmit_slt = 5J
recv_slt = 7;

wen_slt = 2>

ren_slt = 3;
wde_slt = 4;
rde_slt = 5»"

cc_slt = 2;

stack_cffset = 0;
code_offset = 1J

rcct _off set = 2;
pb_offset = 3;

outbuf_off set = 3;
inbuf_offset = 4;

vect_si ze = 4»

end of mgr-con.zli

10b

www.manaraa.com

{*** > l* "V >"* •** *** *»V *** •*** » l* V* • ** ^V *•* V* V* *** -J* *** »V *'» *** *V "^* *J* ^^ *'* *** ^* *V *V "-'-' *-'* ^^ ««** »'* *** *V *** *V » ** *** *** »'* *-** » ** »'* *i* **** "^- *** *** **' *** **
*pi *i% -i* *,% *j^ n-[-» »)*»^ »y» *,*>!* .*,» ^j» *-,% ^p> •»,* <-p ^r* ^* *,* ^pi «y» »[* *p *» *jt *y**t* t* hh *i* *<* *i* *t* *i* i* *th* *i* *p *j* *r* *i* *<* *^ *** *r* i"* "^ *i* *i* *i* 'r* *i* *r* i*

program name: sysmgr. kmd

author: P.J. Corbett, Lt., US.M

date : 28 Feb 96
purpose: This program is used when linking the

sysmgr program after it is compiled. It eliminates the
need to manually enter each of the file names each time
a new version of the program is compiled.

note: the actual sysmgr. kind file contains only
one line. An\ additional information will cause an
°nror when the pascal KT+ linker is called.

J. J* J# * .'^U J, .1. « J. »', ,!, .', .', .:. J, vl, J, »i, X WU J. .<. .1. 4« v, si* ,!#,!, ,1. J. J. J. *!, .'- J, J. J, U. ,^ .', ,1* .'« ^ ^ J, , , .> ,:, .1. .1* .i, Os *U .JU JU "l
t iv *»* 'r* *i»*r» n* *T*V *r* *i* *r ***•" *f i* l--r n* •** *v *i* T *r» *r» *1* *i* *r* n* *i* *r f*n» *i* *t-*»* *r* o**|* *r**V» "r> t* *r» *T» *i* "»* *»* "r> *v *i* *r> i % "P- *t* *t* V-

r : sysmgr = c :rl-init ,b: sysmgr ,b:rllib/s t l3:cc/s t paslit/s/p :?

10S

www.manaraa.com

LIST OF REFERENCES

1. Department of Defense Computer Security Center, Ft.
Meade. Md. , Report CSC-STD-001-83 , POD Trusted
Computer System Evaluation Criteria , 15 August 1985.

2. Department of the Navy, OPNAVINST 5239. 1A (draft
coPy)/ Department of Defense Trusted Network
Evaluation Criteria , 29~~July 1985.

3. National Bureau of Standards, Report ICST/HLNP-81-19,
Security in Higher Level Protocols : Approaches ,

Alternatives , and Recommendations , by V. Voyclock, and
S. Kent, 1981.

4. Voydock, V. , and Kent, S. , "Security in High-Level
Network Protocols," Computing Surveys , v. 15, no. 2,
pp 135-171, June 1983.

5. Tanenbaum, A. S. , Computer Networks , Prentice-Hall.
Inc. , 198i.

"

6. Boebert, E. , Kain, R. , and Young, B. , "Trojan Horse
Rolls Up to DP Gate," Computerworld , pp. 65-69, 2
December 1985.

7. MIT Laboratory for Computer Science, Cambridge, Mass.

,

Report LCS-TR-162, Encrypt ion-Based Protection
Protocols for Interactive User-Computer
Communications , by S. Kent, 1976.

8. Diffie. W. , and M. E. Hellman, "New Directions in
Cryptology, IEEE Transactions on Information Theory ,

IT-22 . pp. 644^634, 6 November VT7b~.

9. National Bureau of Standards, Federal Information
Processing Standard, FIPS publication 46, Data
Encryption Standard , January 1977.

10. Davio, M. . and others, "Analytical Characteristics of
the DES, Advances in Cryptology- Proceedings of
Crypto 83, by D. Chaum, pp. 171-200, Plenum Press,
Inc. ,

19~83.

11. National Bureau of Standards, Federal Information
Processing Standard, FIPS Publication 81, DES Modes of
Operation , 2 December 1980.

12. Spencer, M. E. , and Tavares, S. E. , "A Layered Broadcast
System, Advances in Cryptology- Proceedings of Crypto
83, by D. Chaum, ppT 157-170, Plenum Press, Inc.

,

T9~83.

110

www.manaraa.com

13. Gemini Computers Inc. , Carmel, Ca. , System Overview-
Gemini Trusted Multiple Microcomputer Base , 11 May
vz&r.

14. Gemini Computers, Inc. , Monterey, Ca. , GEMSQS Ring
User' s Manual for Pascal MT+86 , November 1985.

15. Brewer, D. J. , A Real-Time Executive for Multiple
Computer Clusters, Masters Thesis, Naval Postgraduate
School, Monterey California, December 1984.

16. Digital Research, Inc. , CPM-86 Operating Manual , 1983.

17. Gemini Computers, Inc. , Monterey, Ca. , Sysgen User'

s

Manual , September 1985.

Ill

www.manaraa.com

INITIAL DISTRIBUTION LIST

2.

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

--V, COC.
Naval Postgraduate School
Monterey, California 93943

3. Department Chairman, Code 62 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

4. Dr. M. L. Cotton, Code 62Cc 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943

5. Dr. Uno R. Kodres, Code 52Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

6. Lt. Philip J. Corbett, USN 2
72 Pilgrim Rd.
Concord, Massachusetts 01742

7. Daniel Green, Code 20F 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

8. Capt. J. Donegan, USN 1
PMS 400B5
Naval Sea Systems Command
Washington, D. C. 20362

9. RCA AEGIS Data Repository 1
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, N. J. 08057

10. Library (Code E33-05) 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

11. Dr. M.J. Gralia 1
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707

12. Dana Small, Code 8242 1
NOSC
San Diego, California 92152

112

www.manaraa.com

www.manaraa.com

www.manaraa.com

Thesixhesis

.C7545JC75457
|C . 1 c . 1

Corbett
Multilevel secure

front end for data

communications

.

1 DEC 87

15
IS DFC Q7

Thesis
C75457
c.l

o

Corbett
Multilevel secure

front end for data

communications

.

www.manaraa.com

